Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{3}=\frac{2x-1}{5}\)
=> \(\left(x+2\right)\cdot5=3\left(2x-1\right)\)
=> \(5x+10=6x-3\)
=> \(6x-5x=10+3\)
=> \(x=13\)
\(\frac{-x}{4}=\frac{-9}{x}\)
=> \(-x^2=4\cdot\left(-9\right)\)
=> \(-x^2=-36\)
=> \(x^2=36\)
=> \(\orbr{\begin{cases}x^2=6^2\\x^2=\left(-6\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Quỳnh ơi, chuyển 6x sang sẽ là -6x mà viết như cậu phải là -6x+5x :)
a, \(\frac{x+2}{3}=\frac{2x-1}{5}\)
\(\Leftrightarrow\frac{5x+10}{15}=\frac{6x-3}{15}\Leftrightarrow5x+10=6x-3\Leftrightarrow-x+13=0\Leftrightarrow x=-13\)
b, \(\frac{-x}{4}=\frac{-9}{x}\)\(\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
a, \(\frac{x-3}{y-2}=\frac{3}{2}\)và \(x-y=4\)
Theo bài ra ta có :
\(\frac{x-3}{y-2}=\frac{3}{2}\Leftrightarrow2x-6=3y-6\Leftrightarrow2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áps dụng tính chất dãy tỉ số bằng nhau ta đc :
\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)
\(\frac{x}{3}=4\Leftrightarrow x=12\)
\(\frac{y}{2}=4\Leftrightarrow y=8\)
Tương tự với b thôi bn.
Quy đồng: mẫu số chung : 72
\(\frac{1}{18}=\frac{4}{72}\)
\(\frac{x}{12}=\frac{x}{72}\)
\(\frac{y}{9}=\frac{y}{72}\)
\(\frac{1}{4}=\frac{18}{72}\)
=>\(\frac{1}{12}=\frac{6}{72}\)
=>\(\frac{1}{9}=\frac{8}{72}\)
so sánh: \(\frac{1}{12}< \frac{1}{9}\) vì \(\frac{6}{72}< \frac{8}{72}\)
\(\Rightarrow x=1\) ; \(y=1\)
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
a, \(\frac{x-1}{9}=\frac{8}{3}\Leftrightarrow\frac{x-1}{9}=\frac{24}{9}\Leftrightarrow x-1=24\Leftrightarrow x=25\)
b, \(\frac{x+2}{3}=\frac{2x-1}{5}\Leftrightarrow\frac{5x+10}{15}=\frac{6x-3}{15}\Leftrightarrow5x+10=6x-3\)
\(\Leftrightarrow5x+10-6x+3=0\Leftrightarrow-x+13=0\Leftrightarrow x=13\)
a) \(\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow3\left(x-1\right)=8.9\)
\(\Leftrightarrow3x-3=72\)
\(\Leftrightarrow3x=75\)
\(\Leftrightarrow x=25\)
b) \(\frac{x+2}{3}=\frac{2x-1}{5}\)
\(\Leftrightarrow5\left(x+2\right)=3\left(2x-1\right)\)
\(\Leftrightarrow5x+10=6x-3\)
\(\Leftrightarrow5x-6x=-3-10\)
\(\Leftrightarrow-x=-13\)
\(\Leftrightarrow x=13\)