K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Có : x^2-2y^2=1

<=>x^2=2y^2+1

Vì 2y^2 chẵn => x^2=2y^2+1 lẻ

Mà x^2 chính phương => x^2 là số chính phương lẻ 

=> x^2 chia 8 dư 1 => 2y^2 = x^2-1 chia hết cho 8

=> y^2 chia hết cho 4

=> y chia hết cho 2

Mà y nguyên tố => y=2

Khi đó : x^2=2y^2+1 = 2.2^2+1=9

=> x=3 (tm là số nguyên tố)

Vậy x=3;y=2

NV
9 tháng 4 2021

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)< 1\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2< 1\)

Nếu tồn tại 1 trong 3 số \(x-y;y-z;z-1\) khác 0

Do x; y; z nguyên

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge1\) (vô lý)

\(\Rightarrow x-y=y-z=z-1=0\)

\(\Leftrightarrow x=y=z=1\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

25 tháng 7 2023

x=3,y=2

15 tháng 7 2018

\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)

Xét nốt các trường hợp là xong

13 tháng 7 2019

Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm

20 tháng 6 2019

Vì x, y, z tỉ lệ với các số a, b, c nên  suy ra x = ka, y = kb, z = kc

Thay x = ka, y = kb, z = kc vào ( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 ) ta được

[ ( k a ) 2   +   2 ( k b ) 2   +   3 ( k c ) 2 ] ( a 2   +   2 b 2   +   3 c 2 )     =   ( k 2 a 2   +   2 k 2 b 2   +   3 k 2 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) 2     =   [ k ( a 2   +   2 b 2   +   3 c 2 ) ] 2       =   ( k a 2   +   2 k b 2   +   3 k c 2 ) 2       =   ( k a . a   +   2 k b . b   +   3 k c . c ) 2 =   ( x a   +   2 y b   +   3 z c ) 2  

do x = ka,y = kb, z = kc

Vậy

( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 )   =   ( a x   +   2 b y   +   3 c z ) 2

Đáp án cần chọn là: D