Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
a, Để A là phân số thì n + 1 khác 0
=> n khác -1
b, Để A là số nguyên thì 5 chia hết cho n + 1
=> n + 1 thuộc {1; -1; 5; -5}
=> n thuộc {0; -2; 4; -6}
Vậy...
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
a) Để \(\dfrac{n-2}{4}\) là một số nguyên thì:
\(\Rightarrow n-2\) ⋮ 4
\(\Rightarrow n-2\in B\left(4\right)\)
\(\Rightarrow n\in B\left(4\right)+2=\left\{2;6;10;14;18;...\right\}\)
b) \(\dfrac{n+5}{n+2}=\dfrac{n+2+3}{n+2}=\dfrac{n+2}{n+2}+\dfrac{3}{n+2}=1+\dfrac{3}{n+2}\left(n\ne-2\right)\)
Để \(\dfrac{n+5}{n+2}\) là một số nguyên thì \(\dfrac{3}{n+2}\) nguyên:
\(\Rightarrow\text{3}\) ⋮ \(n+2\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
c) \(\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=\dfrac{n+1}{n+1}-\dfrac{5}{n+1}=1-\dfrac{5}{n+1}\left(n\ne-1\right)\)
Để \(\dfrac{n-4}{n+1}\) là một số nguyên thì \(\dfrac{5}{n+1}\) nguyên
\(\Rightarrow5\) ⋮ \(n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)