Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
\(n^2-n+13=m^2\)
\(\Leftrightarrow4n^2-4n+52=4m^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=4m^2\)
\(\Leftrightarrow\left(2m-2n+1\right)\left(2m+2n-1\right)=51=1.51=3.17\)
Xét bảng:
2m-2n+1 | 1 | 51 | 3 | 17 |
2m+2n-1 | 51 | 1 | 17 | 3 |
m | 13 (tm) | 13 (tm) | 5 (tm) | 5 (tm) |
n | 13 (tm) | -12 (tm) | 4 (tm) | -3 (tm) |
thầy sai đâu đấy
\(\left(2n-1\right)^2+51=4m^2\Leftrightarrow\left(2n-1\right)^2-4m^2=-51\)
\(\Leftrightarrow\left(2n-1-2m\right)\left(2n-1+2n\right)=-51\)
vì \(2n-1+2m>2n-1-2m\)
\(\left(2n-1-2m\right)\left(2n-1+2n\right)=1.\left(-51\right)=\left(-51\right).1=3.\left(-17\right)=\left(-17\right).3\)
TH1 : \(\hept{\begin{cases}2n-1-2m=-51\\2n-1+2m=1\end{cases}}\)chứ ạ ?
rồi xét TH còn lại, mong thầy giải đáp giúp, có gì sai thầy cho em xin lỗi
Để A là số chính phương thì :
\(n^2-n+13=k^2\)\(\left(k\inℕ\right)\)
\(\Leftrightarrow4n^2-4n+52=4k^2\)
\(\Leftrightarrow\left(2n\right)^2-2\cdot2n\cdot1+1-4k^2+51=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2k\right)^2=-51\)
\(\Leftrightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-51\)
Dễ thấy \(2n-2k-1< 2n+2k-1\)( vì \(k\inℕ\))
TH1 : \(\hept{\begin{cases}2n-2k-1=-51\\2n+2k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-25\\n+k=1\end{cases}\Leftrightarrow\hept{\begin{cases}n=-12\\k=13\end{cases}}}}\)
TH2 : \(\hept{\begin{cases}2n-2k-1=-1\\2h+2k-1=51\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=0\\n+k=26\end{cases}\Leftrightarrow\hept{\begin{cases}n=13\\k=13\end{cases}}}}\)
TH3 : \(\hept{\begin{cases}2n-2k-1=-3\\2n+2k-1=17\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-1\\n+k=9\end{cases}\Leftrightarrow\hept{\begin{cases}n=4\\k=5\end{cases}}}}\)
TH4 ; \(\hept{\begin{cases}2n-2k-1=-17\\2n+2k-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-8\\n+k=2\end{cases}\Leftrightarrow\hept{\begin{cases}n=-3\\k=5\end{cases}}}}\)
Vậy....
Đặt \(A=n^2-n+13=k^2\)
\(\Rightarrow4n^2-4n+52=4k^2\)
\(\Rightarrow\left(4n^2-4n+1\right)+51=4k^2\)
\(\Rightarrow\left(2k\right)^2-\left(2n-1\right)^2=51\)
\(\Rightarrow\left(2k-2n+1\right)\left(2k+2n-1\right)=51\)
Bạn xét ước của 51 rồi lập bảng nốt nha!
Đặt \(n^2+n+1=k^2\left(k\in Z^+\right)\)
\(\Leftrightarrow4n^2+4n+4=4k^2\)
\(\Leftrightarrow4k^2=4n^2+4n+1+3\)
\(\Leftrightarrow4k^2-\left(2n+1\right)^2=3\)
\(\Leftrightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
Vì \(n,k\in Z\Rightarrow2k-2n-1,2k+2n+1\inƯ\left(3\right)\)
*lập bảng
2k-2n-1 | -3 | -1 | 1 | 3 |
2k+2n+1 | -1 | -3 | 3 | 1 |
2k-2n | -2 | 0 | 2 | 4 |
2k+2n | -2 | -4 | 2 | 0 |
k | -1 | -1 | 1 | 1 |
n | 0 | -1 | 0 | -1 |
Vậy \(n\in\){-1; 0} thì n2+n+1 là số cp
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên
$\Rightarrow 4n^2-4n+52=4t^2$
$\Leftrightarrow (4n^2-4n+1)+51=4t^2$
$\Leftrightarrow (2n-1)^2+51=(2t)^2$
$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$
Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.
\(B=n^2-2.n.\dfrac{1}{2}+\dfrac{1}{4}+12,25=\)
\(=\left(n-\dfrac{1}{2}\right)^2+12,25\ge12,25\)
B là số chính phương
\(\Rightarrow n^2-n+13=p^2\)
\(\Leftrightarrow4n^2-4n+52=4p^2\)
\(\Leftrightarrow\left(2n-1\right)^2+51=4p^2\)
\(\Leftrightarrow4p^2-\left(2n-1\right)^2=51\)
\(\Leftrightarrow\left(2p-2n+1\right)\left(2p+2n-1\right)=51\)
\(\Rightarrow\left(2p-2n+1\right)\) và \(\left(2p+2n-1\right)\) phải là ước của 51
\(=\left\{-51;-17;-3-1;1;3;17;51\right\}\)
Ta có các trường hợp
\(\left\{{}\begin{matrix}2p-2n+1=-51\\2p+2n-1=-1\end{matrix}\right.\) giải hệ để tìm n
Tương tự với các trường hợp khác