K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)

\(\Leftrightarrow2018x+2018y=xy\)

\(\Leftrightarrow\left(2018x-xy\right)-\left(2018^2-2018y\right)=-2018^2\)

\(\Leftrightarrow x\left(2018-y\right)-2018\left(2018-y\right)=-2018^2\)

\(\Leftrightarrow\left(x-2018\right)\left(y-2018\right)=2018^2\)

Vì \(x-y\) lẻ => x,y khác tính chẵn lẻ

Không mất tổng quát g/s x chẵn, y lẻ

=> (x-2018) chẵn và (y-2018) lẻ

Lại có \(2018^2=4\cdot1009^2=4036\cdot1009\)

Nên ta có các TH sau:

+ Nếu: \(\hept{\begin{cases}x-2018=4\\y-2018=1009^2\end{cases}}\Rightarrow\hept{\begin{cases}x=2022\\y=1009^2+2018\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x-2018=4036\\y-2018=1009\end{cases}}\Rightarrow\hept{\begin{cases}x=6054\\y=3027\end{cases}}\)

Vậy \(\left(x;y\right)=\left\{\left(2022;1009^2+2018\right);\left(6054;3027\right)\right\}\) và 2 hoán vị của nó

1 tháng 5 2020

Gắt thế,IMO 2003

Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)

Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn 

Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)

\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)

Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương

Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)

\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)

Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)

Vậy.........................

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...