Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Lời giải:
$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$
Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên.
Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;-2\right\}$
Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:
$5\vdots 2x+7$
$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$
$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$
B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)
=> Để B nguyên thì 1 chia hết cho x+1
=> x+1 ∈Ư(1)={1,-1}
X+1 | 1 | -1 |
x | 0 | -2 |
Vậy để B nguyên thì x∈{0,-2}
C=\(\dfrac{5}{2x+7}\)(x khác -7/2)
Để C nguyên thì 5 chia hết cho 2x+7
=>2x+7∈Ư(5)={1,-1,5,-5}
2x+7 | 1 | -1 | 5 | -5 |
x | -3 | -4 | -1 | -6 |
Để C nguyên thì x∈{-3,-4,-1,-6}
Để \(\frac{2x-1}{2x+3}\) đạt giá trị nguyên
<=> 2x-1 chia hết cho 2x+3
=> (2x+3)-4 chia hết cho 2x+3
Để (2x+3)-4 chia hết cho 2x+3
<=> 2x+3 chia hết cho 2x+3
4 chia hết cho 2x+3
Vì 4 chia hết cho 2x+3 => 2x+3 thuộc Ư(4)={-4;-2;-1;1;2;4}
Ta có bảng sau:
2x+3 | -4 | -2 | -1 | 1 | 2 | 4 |
x | Loại | Loại | -2 | -1 | Loại | Loại |
Vậy các giá trị nguyên n thỏa mãn là: -2;-1
k nha các bạn
Mình có góp ý thế này nhé Trịnh Thị Thúy Vân : Vì 2x + 3 là số lẻ nên ta chỉ xét trường hợp 1 và -1
\(E=\frac{7-x}{x-2}=\frac{5+2-x}{x-2}=\frac{5-x+2}{x-2}=\frac{5-\left(x-2\right)}{x-2}=\frac{5}{x-2}-1\)
E có giá trị nguyên \(\Leftrightarrow\) \(\frac{5}{x-2}\) có giá trị nguyên \(\Leftrightarrow\) x - 2 \(\in\) Ư(5) \(\Leftrightarrow\) x - 2 \(\in\) {-5 ; -1 ; 1 ; 5}
\(\Leftrightarrow\) x \(\in\) {-3 ; 1 ; 3 ; 7}
A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)
A nhỏ nhất khi x - 7 = 3 => x = 10
A lơn nhất khi x - 7 = -3 => x = 4
\(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
để 2x-1/2x+3 có giá trị nguyên thì4 phải chia hết cho 2x+3
\(\Rightarrow2x+3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
\(\Rightarrow x\left\{-2;-1\right\}\)
TH1:nếu x-3<0 <=>A<0
TH2:nếu x-3>0<=>x-3 lớn nhất
Chọn TH1:x-3<0
Để A nhỏ nhất<=>x-3 lớn nhất
Mà x-3<0=>x-3=-1
=>x=2.Khi đó A=-1
Vậy x=2 thì A nhỏ nhất
Biểu thức trên có giá trị nguyên tức là 5x+7 chia hết cho 2x+1 => 2(5x+7) chia hết cho 2x+1
\(\frac{2\left(5x+7\right)}{2x+1}=\frac{10x+14}{2x+1}=\frac{\left(10x+5\right)+9}{2x+1}=\frac{5\left(2x+1\right)+9}{2x+1}=5+\frac{9}{2x+1}.\)
Để biểu thức trên có giá trị nguyên thì 9 phải chia hết cho 2x+1 tức là 2x+1 phải là ước của 9
=> 2x+1={-1;-3;-9; 1; 3; 9} từ các gá trị của 2x+1 sẽ tính được các giá trị của x