K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Phương trình (m – 1) x 2 + 3mx + 2m + 1 = 0 (a = m – 1; b = 3m; c = 2m + 1)

Ta có

∆ ' = ( 3 m ) 2 – 4 . ( 2 m + 1 ) . ( m – 1 ) = m 2 – 4 m + 4 = ( m –   2 ) 2

Gọi x 1 ;   x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có

P = x 1 . x 2 = 2 m + 1 m − 1

Phương trình có hai nghiệm cùng dấu khi  a ≠ 0 Δ ≥ 0 P > 0 ⇔ m − 1 ≠ 0 m − 2 2 ≥ 0     ( l u o n    d u n g ) 2 m + 1 m − 1 > 0

⇔ m ≠ 1 2 m + 1 m − 1 > 0

Ta có 

2 m + 1 m − 1 > 0 ⇔ 2 m + 1 > 0 m − 1 > 0 2 m + 1 < 0 m − 1 < 0 ⇔ m > − 1 2 m > 1 m < − 1 2 m < 1 ⇔ m > 1 m < − 1 2

Vậy  m > 1 m < − 1 2 là giá trị cần tìm

Đáp án: D

a: Δ=(-2m)^2-4*3*1=4m^2-12

Để phương trình có nghiệm kép thì 4m^2-12=0

=>m^2=3

=>\(m=\pm\sqrt{3}\)

b: 

TH1: m=0

=>-6x-3=0

=>x=-1/2(nhận)

TH2: m<>0

Δ=(-6)^2-4*4m*(-m-3)

=36-16m(-m-3)

=36+16m^2+48m

=16m^2+48m+36

Để phương trình có nghiệm kép thì 16m^2+48m+36=0

=>m=-3/2

c: TH1: m=-2

=>-2(-2-1)x+4=0

=>6x+4=0

=>x=-2/3(nhận)

TH2: m<>-2

Δ=(2m-2)^2-4(m+2)*4

=4m^2-16m+4-16m-32

=4m^2-32m-28

Để pt có nghiệm kép thì 4m^2-32m-28=0

=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)

d: TH1: m=6

=>18x-2=0

=>x=1/9(nhận)

TH2: m<>6

Δ=(3m)^2-4*(-2)(m-6)

=9m^2+8m-48

Để pt có nghiệm kép thì 9m^2+8m-48=0

=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)

Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)

\(\Leftrightarrow m^2+2m< 0\)

\(\Leftrightarrow m^2+2m+1< 1\)

\(\Leftrightarrow\left(m+1\right)^2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)

Ta có: \(\Delta'=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét: \(x_1x_2=m^2+2m\)

Để phương trình có 2 nghiệm trái dấu 

\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

17 tháng 4 2016

trời đất
ai tl hộ mình vs

1) Thay m=2 vào (1), ta được:

\(x^2-2\cdot3x+16-8=0\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy: Khi m=2 thì (1) có hai nghiệm phân biệt là: \(x_1=2\)\(x_2=4\)

b) Ta có: \(\Delta=4\cdot\left(2m-1\right)^2-4\cdot1\cdot\left(8m-8\right)\)

\(\Leftrightarrow\Delta=4\cdot\left(4m^2-4m+1\right)-4\left(8m-8\right)\)

\(\Leftrightarrow\Delta=16m^2-16m+4-32m+32\)

\(\Leftrightarrow\Delta=16m^2-48m+36\)

\(\Leftrightarrow\Delta=\left(4m\right)^2-2\cdot4m\cdot6+6^2\)

\(\Leftrightarrow\Delta=\left(4m-6\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\left(4m-6\right)^2>0\)

mà \(\left(4m-6\right)^2\ge0\forall m\)

nên \(4m-6\ne0\)

\(\Leftrightarrow4m\ne6\)

hay \(m\ne\dfrac{3}{2}\)

Vậy: Để phương trình có hai nghiệm phân biệt thì \(m\ne\dfrac{3}{2}\)

3 tháng 4 2023

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....