Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
(ab)2 =(a+b)3
<=>ab phải là lập phương của một số , a+b là bình phương của một số
=>ab=27 hoặc 64
Chỉ có 27 thỏa mãn
Vậy số cần tìm là 27
Gọi số chính phương cần tìm là n2n2
Có:
:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)
Theo bài ra ta có 100A là số chính phương
⇒A⇒A là số chính phương
Đặt A=x2A=x2
Có: n2>100x2n2>100x2
⇒n>10x⇒n>10x
⇒n≥10x+1⇒n≥10x+1
⇒n2≥(10x+1)2⇒n2≥(10x+1)2
⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1
⇒b≥20x+1⇒b≥20x+1
Mà b≤99b≤99
⇒20x+1≤99⇒20x+1≤99
⇒x≤4⇒x≤4
Ta có :
n2=100x2+b≤1600+99n2=100x2+b≤1600+99
⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699
Chỉ có 412=1681(tm)412=1681(tm)
Vậy số chính phương lớn nhất phải tìm là 412=1681
Bài hay vậy!
Từ các giả thiết về số chẵn suy ra \(b,d,f,h\) là các chữ số chẵn còn \(a,c,e,g,i\)là các chữ số lẻ.
Do \(\overline{abcde}\) chia hết cho 5 nên \(e=5\).
Từ các giả thiết về chia hết cho 3, 6, 9 suy ra \(\overline{abc},\overline{def},\overline{ghi}\) đều chia hết cho 3.
Nhận xét: Do \(\overline{cd}\) chia hết cho 4 mà \(c\) lẻ nên (bằng kiểm tra) suy ra \(d=2\) hoặc \(d=6.\)
Trường hợp 1: \(d=2\). Khi đó \(\overline{def}=\overline{25f}\) chia hết cho 3 nên \(f=8\).
\(\overline{fgh}=\overline{8gh}\) chia hết cho 8 nên \(\overline{gh}=16\). Nhưng khi đó \(\overline{ghi}=\overline{16i}\) chia hết cho 3 thì vô lí.
Trường hợp 2: \(d=6\). Khi đó \(\overline{def}=\overline{65f}\) chia hết cho 3 nên \(f=4\).
\(\overline{fgh}=\overline{4gh}\) chia hết cho 8 nên \(\overline{gh}=32\) hoặc \(\overline{gh}=72\).
Nếu \(\overline{gh}=32\) thì do \(\overline{ghi}\) chia hết cho 3 suy ra vô lí.
Do đó \(\overline{gh}=72\) nên \(\overline{ghi}=729\).
Ta đã có \(\overline{abcdefghi}=\overline{abc654729}\). Còn lại các chữ số \(1,3,8\).
Lưu ý \(b\) chẵn.
Nếu \(\overline{abc}=183\) thì \(1836547\) không chia hết cho 7 (vô lí).
Còn \(\overline{abc}=381\) thì \(3816547\) chia hết cho 7.
Đáp số là \(381654729\)
dễ mà nhưng em đang ốm ko giải đc mn hộ em với đủ 50 thì em giải cho nhé