\(\over...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

d) Để \(\dfrac{x^2-59}{x+8}\) nguyên \(\Leftrightarrow x^2-59⋮x+8\)

\(\Rightarrow\left(x^2-64\right)+5⋮x+8\)

\(\Rightarrow\left(x^2-8^2\right)+5⋮x+8\)

\(\Rightarrow\left(x-8\right)\left(x+8\right)+5⋮x+8\)

\(\Rightarrow5⋮x+8\)

\(\Rightarrow x+8\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow x\in\left\{-9;-7;-13;-3\right\}\)

Vậy \(x\in\left\{-9;-7;-13;-3\right\}\) thì \(\dfrac{x^2-59}{x+8}\in Z\)

10 tháng 9 2019

1b.

Cach 1

Ta co:

\(M=\frac{x^2-2x+2015}{x^2}\)

\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)

Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)

Xet \(M\ne1\)

\(\Leftrightarrow\Delta^`\ge0\)

\(1+\left(M-1\right).2015\ge0\)

\(\Leftrightarrow2015M-2014\ge0\)

\(\Leftrightarrow M\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Cach 2

\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

4 tháng 2 2017

Bài 2 :

a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.

Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.

b) Trước hết : \(23\le\overline{a_7a_8}\le46\)

Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)

Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.

Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.

Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).

4 tháng 2 2017

Bài 1 :

Không đủ dữ kiện.

Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Nếu $p_1,p_2,p_3,p_4$ là 4 số nguyên tố khác nhau thì loại TH $\overline{a_1a_2a_3}=121; 169$.

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Lời giải:

Theo đề bài ta có:
\(A=\overline{a_1a_2a_3}.10^6+\overline{b_1b_2b_3}.10^3+\overline{a_1a_2a_3}=\overline{a_1a_2a_3}.10^6+2.\overline{a_1a_2a_3}.10^3+\overline{a_1a_2a_3}\)

\(=\overline{a_1a_2a_3}(10^6+2.10^3+1)=\overline{a_1a_2a_3}(10^3+1)^2\)

\(=\overline{a_1a_2a_3}[(10+1)(10^2-10+1)]^2=\overline{a_1a_2a_3}.11^2.91^2=\overline{a_1a_2a_3}.11^2.7^2.13^2\)

Theo dạng của $A$ ta thấy $\overline{a_1a_2a_3}$ là bình phương của 1 số nguyên tố.

Đặt $\overline{a_1a_2a_3}=p^2$. Dễ thấy $a_1<5$ vì nếu $a_1\geq 5$ thì $\overline{b_1b_2b_3}=2\overline{a_1a_2a_3}\geq 1000$ (vô lý). Khi đó:

$100\leq \overline{a_1a_2a_3}=p^2\leq 499$

$\Rightarrow 10\leq p\leq 22$. Mà $p$ nguyên tố nên $p=11; 13;17;19$

Khi đó thay vào tìm được $\overline{a_1a_2a_3}=121; 169; 289; 361$

$\Rightarrow \overline{b_1b_2b_3}=242; 338; 578; 722$ (tương ứng)

Khi đó bạn ghép lại để viết ra số A thôi.