K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

1b.

Cach 1

Ta co:

\(M=\frac{x^2-2x+2015}{x^2}\)

\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)

Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)

Xet \(M\ne1\)

\(\Leftrightarrow\Delta^`\ge0\)

\(1+\left(M-1\right).2015\ge0\)

\(\Leftrightarrow2015M-2014\ge0\)

\(\Leftrightarrow M\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Cach 2

\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)

Dau '=' xay ra khi \(x=2015\)

Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

                                                                       BẠN TỰ VẼ HÌNH NHA

                                                                                       Giải 

                                    Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:

   a)                      Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =S​tam giác ABC                    

                   <=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah  <=> (1/2)a.(x+y+z)=(1/2)ah      

              <=>x+y+z=h không phụ thuộc vào vị trí của điểm M

   b)                    x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ;  z2+x2\(\ge\)2zx

             =>2.(x2+y2+z2)  \(\ge\)2xy+2xz+2yz

             =>3.(x2+y2+z2)   \(\ge\)x2+y2+z2+2xy+2xz+2yz

            =>x2+y2+z2     \(\ge\)(x+y+z)2/3=h2/3  không đổi

                     Dấu "=" xảy ra khi x=y=z

           Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC

20 tháng 7 2017

\(a.\)Ta có:    \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
                      \(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
                      \(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
   mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm

6 tháng 3 2019

dạ xin lỗi ạ Tam giác ABC đều ạ