K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TO
0
GV
0
NT
1
19 tháng 7 2015
ab*(a + b) = 900 => ab chia hết cho 3 - do vậy a + b cũng chia hết cho 3 - vì ngược lại thì cả (ab) và a + b đều không chia hết cho 3 nên tích (ab)*(a + b) không chia hết cho 3. Mặt khác (a + b) không chia hết cho 9 vì lúc đó cả (ab) và a + b đều chia hết cho 9 => (ab)*(a + b) chia hết cho 9², không thể.
9 < 900 / 99 ≤ 900 / (ab) = a + b
=> a + b chỉ có thể là 12 hoặc 15
Với a + b = 12 => (ab) = 900 / 12 = 75 (thỏa với a = 7, b = 5)
Với a + b = 15 => (ab) = 900 / 15 = 60 (loại)
NT
1
NT
0
NT
5
10 tháng 9 2018
Ta có :
abab = ab . 101 = ab . cdc
=> cdc = 101
=> c = 1 ; d = 0
còn ab thì : a thuộc N* ; b thuộc N ; a,b < 10 .
Tk mình nha
^_^ .
Giải
Biến đổi bất đẳng thức đã cho thành phép nhân : ab . ( a + b ) = 900.
Như vậy ab và a + b là cácc ước của 900. Ta có các nhận xét :
a) a + b < 18 ;
b) ab < 100 nên a + b > 9
c) Tích ab ( a + b ) chia hết cho 3 nên tồn tại một thừa số chia hết cho 3.
Do ab và a + b có cùng số dư trong phép chia cho 3 nên cả hai cùng chia hết cho 3.
Từ ba nhận xét đó, ta có a + b bằng 12, hoặc 15, hoặc 18.
Nếu a + b = 12 thì ab = 900 : 12 = 75, thỏa mãn 7 + 5 = 12.
Nếu a + b = 15 thì ab = 900 : 15 = 60, loại
Nếu a + b = 18 thì ab = 900 : 18 = 50, loại
Ta có đáp số : a = 7, b = 5
Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath