K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

ko có cặp nào nha bạn

9 tháng 3 2016

Ta có :1/(x+y)=1/x+1/y

=>1/(x+y)=(x+y)/xy

=>(x+y)(x+y)=xy

=>(x+y)2=xy

 Vì (x+y)2 >= 0 với mọi x ,y(*)

Mà xy<0( do x,y trái dấu). Mâu thuẫn với (*)

=> không tồn tại (x;y) thoả mãn đề bài

 vậy.........

2 tháng 3 2016

không có cặp nào thoanmanx đè bài

10 tháng 3 2016

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)\left(x+y\right)=xy\)

=>(x+y)2=xy

\(\left(x+y\right)^2\ge0\) với mọi x,y \(\in\) R

xy < 0(do x;y trái dấu)

=>\(\left(x+y\right)^2\ne xy\)

=>ko có cặp (x;y) nào thỏa mãn đề bài

2 tháng 7 2017

Ta dùng phương pháp phản chứng :

giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)

đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )

Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

6 tháng 9 2016

Giả sử tồn tại x,y trái dấu thỏa mãn

Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)

=> (x+y)2=xy 

Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0

Còn xy nhỏ hơn 0 vì x,y trái dấu

Vậy ko có x,y trái dấu thỏa mãn đề bài

6 tháng 9 2016

1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

21 tháng 1 2015

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)

=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu 

Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho

25 tháng 8 2018

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'

Do đó không tồn tại x,y trái dấu và không đối nhau

Vậy ...

25 tháng 8 2018

Ta dùng pháp phản chứng:   

Giả sử tồn tại 2 số hữu tỉ x và y  trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}\)\(\frac{y+x}{xy}\)  <=> \(\left(x+y\right)^2\)  = xy

Điều này vô lí vì  \(\left(x+y\right)^2\)  > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.

5 tháng 5 2018

=> x+y/xy =1/3                 =>3.[(x-3)+3]=(x-3).y            TH1:x-3=1;y-3=9           TH3:x-3= -1;y-3= -9        Vậy{x;y}={4;12};{6;6};{2;-6}

=>(x+y).3=xy                   =>3.(x-3)+9=(x-3).y              =>x=4;y=12(TM)                   =>x=2;y= -6(TM)

=>3x + 3y=xy                  =>9=(x-3)(y-3)                     TH2:x-3=3;y-3=3            TH4:x-3=3;y-3=3

=>3x=xy-3y                    =>x-3;y-3 thuộc Ư(9)            =>x=6;y=6(TM)                    =>x=0;y=0(L)

=>3x=(x-3).y