K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Ta có:\(2x^2+y^2-2y=2\left(xy-1\right)\)

\(\Rightarrow2x^2+y^2-2y-2xy+2=0\)

\(\Rightarrow x^2+y^2+1-2y-2xy+2x+x^2-2x+1=0\)

\(\Rightarrow\left(x-y+1\right)^2+\left(x-1\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x-y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x-y+1\right)^2+\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y+1=0\\x-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=x+1\\x=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

14 tháng 3 2018

2x^2 + y^2 -2y = 2(xy - 1)

<=> 4x^2 + 2y^2  - 4y - 4xy +4 = 0 ( chuyển vế và nhân cả 2 vế với 2 )

<=> ( 4x^2 -4xy +y^2 )  +(y^2 - 4y +4 )  = 0

<=> (2x - y)^2  +(y-2)^2  = 0

Mà (2x-y)^2  > hoặc = 0 với mọi x,y ;  (y-2)^2 > hoặc = 0 với mọi y 

=> \(\hept{\begin{cases}\left(2x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy x = 1 , y = 2

Tích cho mk nha !!!!!~~

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

17 tháng 9 2018

\(a)\)\(xy-x-y=1\)

\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)

\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)

Lập bảng : 

\(x-1\)\(1\)\(2\)\(-1\)\(-2\)
\(y-1\)\(2\)\(1\)\(-2\)\(-1\)
\(x\)\(2\)\(3\)\(0\)\(-1\)
\(y\)\(3\)\(2\)\(-1\)\(0\)

Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~ 


 

17 tháng 9 2018

\(b)\)\(xy-2x-2y=1\)

\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)

\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)

\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)

Lập bảng : 

\(x-2\)\(1\)\(5\)\(-1\)\(-5\)
\(y-2\)\(5\)\(1\)\(-5\)\(-1\)
\(x\)\(3\)\(7\)\(1\)\(-3\)
\(y\)\(7\)\(3\)\(-3\)\(1\)

Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)

Chúc bạn học tốt ~ 

19 tháng 5 2017

x=1

y=1

hết rồi

19 tháng 5 2017

Vãi mình hỏi cách làm mà