Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
x/2-2/y=1/2
-2/y=1/2-x/2
-2/y=1-x/2
=>y.(1-x)=-2.2
y.(1-x)= -4
=>y và 1-x thuộc Ư(-4)=(1;-1;2;-2;4;-4)
Ta có bảng tương ứng:
1-x =1 thì x=0;y=-4
1-x=-1 (loại)
1-x=2 thì x=-1;y=2
1-x=-2 thì x=3;y=-2
1-x=4 thì x=-3;y=1
1-x=-4 thì x=5;y=-1
Vậy (x;y)=(0;4);(-1;2);(3;-2);(-3;1);(5;-1)
Chúc bạn học tốt!
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)
mà `y in ZZ;x in ZZ`
`=>y in ZZ;2x-3 in ZZ`
`=>y;2x-3` thuộc ước nguyên của `12`
`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`
Ta có bảng sau :
`y` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`2x-3` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`x` | `1` | `1/2` | `0` | `-1/2` | `-3/2` | `-9/2` | `2` | `5/2` | `3` | `7/2` | `9/2` | `15/2` |
Vì `x;y in ZZ`
nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`
\(\frac{1}{x}-\frac{3}{y}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x}=\frac{1}{8}+\frac{3}{y}\)
\(\Leftrightarrow\frac{1}{x}=\frac{y}{8y}+\frac{24}{8y}=\frac{y+24}{8y}\)
\(\Leftrightarrow8y=x\left(y+24\right)\)
Dễ rồi lập bảng giải nốt e nhé !
Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$
$\frac{6+xy}{3x}=\frac{1}{6}$
$\frac{2(6+xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(6+xy)=x$
$\Rightarrow 12+2xy-x=0$
$12=x-2xy$
$12=x(1-2y)$
$\Rightarrow 1-2y$ là ước của $12$
Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$
$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$
$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)
Không đúng
theo mk nghĩ là bài này áp dụng dãy tỉ số = nhau
\(\frac{5}{x}=\frac{2y+1}{6}=x\left(2y+1\right)=5.6=30.\)vì y thuộc z nên 2y+1 thuộc z và x thuộc z mà x(2y+1)=30 nên x;2y+1 thuộc Ư(30)={-1;1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}.
Vì 2y+1 là số lẻ nên ta có bảng sau:
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
---|---|---|---|---|---|---|---|---|
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
Vậy các cặp số nguyên (x;y) thỏa mãn đề bài là:......................................
\(\Leftrightarrow\dfrac{xy-12}{4y}=\dfrac{5}{8}\)
=>2(xy-12)=5y
=>2xy-24=5y
=>2xy-5y=24
=>y(2x-5)=24
mà x,y là số nguyên
nên \(\left(2x-5;y\right)\in\left\{\left(1;24\right);\left(-1;-24\right);\left(3;8\right);\left(-3;-8\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;24\right);\left(2;-24\right);\left(4;8\right);\left(1;-8\right)\right\}\)
Theo đề bài ra ta có:
\(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=> \(\dfrac{15}{3x}-\dfrac{xy}{3x}=\dfrac{1}{6}\)
=> \(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(15-xy\right)=3x\)
=> \(90-6xy=3x\)
=> \(3x+6xy=90\)
=> \(3x\left(1+2y\right)=90\)
=> \(x\left(1+2y\right)=30\) (chia hai vế cho 3)
=> x và 1+2y là các ước của 30 . Ta có bảng sau:
Mà x ;y là các số nguyên => \(\left(x;y\right)\in\left\{\left(30;0\right),\left(-30;-1\right),\left(2;7\right),\left(-2;-8\right),\left(10;1\right),\left(-10;-2\right),\left(6;2\right),\left(-6;-3\right)\right\}\)