K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.

25 tháng 7 2023

x=3,y=2