Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(\frac{a}{b}=\frac{5}{7}\)
=> Đặt\(\frac{a}{5}=\frac{b}{7}=k\)
=> a = 5k; b = 7k
Thay vào, ta có:
B = \(\frac{5.5k-7k}{3.5k-2.7k}=\frac{25k-7k}{15k-14k}=\frac{18k}{k}=18\)
2,
M = 3x3y - 8xy2 + ax3y + xy2 - 4xy
M = (3 + a)x3y - 7xy2 - 4xy
Có Bậc của M là 3
=> Bậc của hạng tử lớn nhất là 3
Mà (3 + a)x3y có bậc là 4
=> M có bậc là 4 (trái giả thiết)
=> (3 + a)x3y = 0
=> (3 + a) = 0 hoặc x = 0 hoặc y = 0
+ Nếu x = 0 hoặc y = 0
=> M = 0 không có bậc (KTM)
=> 3 + a = 0
=> a = -3
A)\(5xyz.4x^2y^2.\left(-2x^3y\right)=\left(5.4.\left(-2\right)\right).\left(xx^2x^3\right).\left(yy^2y\right)=\left(-40\right)x^6y^4\)
- BẬC : 10
- HỆ SỐ: -40
B) \(-xy.\left(\frac{1}{2}x^3y^4\right).\left(\frac{-4}{7}x^2y^5\right)=\left(\frac{1}{2}.\frac{-4}{7}.\left(-1\right)\right).\left(xx^3x^2\right).\left(y^4y^5y\right)=\frac{2}{7}x^6y^{10}\)
- BẬC : 16
- HỆ SỐ: 2/7
C) \(\frac{5}{3}x^2y^4.\left(\frac{-6}{5}xy^3\right).\left(-xy\right)=\left(\frac{5}{3}.\frac{-6}{5}.\left(-1\right)\right).\left(x^2xx\right).\left(y^4y^3y\right)=2x^4y^8\)
- BẬC : 12
- HỆ SỐ : 2
D) \(\left(\frac{-1}{3}x^2y^5\right).\left(\frac{3}{4}xy\right).5x=\left(\frac{-1}{3}.\frac{3}{4}.5\right).\left(x^2xx\right).\left(y^5y\right)=\frac{-5}{4}x^4y^6\)
- BẬC : 10
- HỆ SỐ : -5 /4
CHÚC BN HỌC TỐT!!
Haizz
Tìm bậc của đa thức:
a) \(A\left(x\right)=72x^2-2x-70\)
b) \(B\left(x\right)=x^2+73x+142\)
c) \(C\left(x\right)=x^2+3x+2\)
Chứng minh các đa thức sau vô nghiệm:
a) \(A\left(x\right)=x^2+k\)( với k>0)
b) \(B\left(x\right)=x^2+x+1\)
c) \(C\left(y\right)=y^2+2y+2\)
Nâng cao:
Cho đa thức một biến sau
\(F\left(x\right)=x^3+6x^2+11x+6\)
Tìm ngiệm của đa thức trên
M=-xy-3xy+4xy
M=-(xy+3xy)+4xy
M=-4xy+4xy
M= 0
vậy bậc của M=0
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
\(a)7x^23xy^2=\left(7.3\right)\left(x^2.x\right)y^2=21x^3y^2\)
Bậc của đơn thức : \(3+2=5\)
\(b)x^2yz.\left(-2\right)xy.2z=\left(-2.2\right).\left(x^2.x\right)\left(y.y\right)\left(z.z\right)\)
\(-4x^3y^2z^2\)
Bậc của đơn thức : \(3+2+2=7\)
Chúc bạn học tốt !!!
\(2x^3y^6-4xy+5xyz+xy+8x^3y^6-xyz\)
\(=\left(2x^3y^6+8x^3y^6\right)-\left(4xy-xy\right)+\left(5xyz-xyz\right)\)
\(=10x^3y^6-3xy+4xyz\)
Bậc của đa thức là 9