Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4} = \dfrac{{x + 2y - 3z}}{{2 + 2.3 - 3.4}} = \dfrac{{ - 12}}{{ - 4}} = 3\\ \Rightarrow x = 3.2 = 6\\y = 3.3 = 9\\z = 3.4 = 12\end{array}\)
Vậy x = 6, y = 9, z = 12.
\(2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2};7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{6}=\dfrac{z}{35}=\dfrac{x-2y+z}{15-12+35}=\dfrac{-19}{38}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-30\\b=-12\\c=-70\end{matrix}\right.\)
\(\frac{6}{7x}=\frac{9}{11y}=\frac{2}{3z}\) như thế ak
ta có:6/7x=9/11y=2/3z=k suy ra x=7/6k; y=11/9k;z=3/2 k
ta có: 7/6k+11/9k+3/2k=350
35/9k=350
k=350:35/9=90
x=90x7/6105
y=90x11/9=110
z=90x3/2=135