K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Lời giải:
Nếu cả 3 số nguyên tố trên đều lẻ. Khi đó: $p^q+q^p$ là tổng 2 số lẻ, nên kết quả là một số chẵn (vô lý vì $r$ cũng lẻ)
$\Rightarrow$ trong 3 số trên có ít nhất 1 số chẵn.
Vì $r=p^q+q^p>2$ với mọi $p,q\in\mathbb{P}$ nên số lẻ chỉ có thể là $p$ hoặc $q$.
Không mất tổng quát, giả sử $p=2$. Khi đó:
$2^q+q^2=r$
Nếu $q=3$ thì $r=2^3+3^2=17$ (thỏa mãn)
Nếu $q>3$ thì $(q,3)=1$
$\Rightarrow q^2\equiv 1\pmod 3$ (do 1 scp khi chia 3 dư 0 hoặc 1, mà $q\not\vdots 3$ nên $q^2$ chia 3 dư 1)
$2^q\equiv (-1)^q\equiv -1\equiv 2\pmod 3$ (do $q$ lẻ)
$\Rightarrow r=2^q+q^2\equiv 2+1\equiv 3\equiv 0\pmod 3$
$\Rightarrow r\vdots 3\Rightarrow r=3$
$2^q+q^2=3$ (vô lý do với số nguyên tố $q>3$ thì $2^q+q^2> 2^3+3^2>3$)
Vậy $(p,q,r)=(2,3,17), (3,2,17)$