K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

 Không mất tính tổng quát, giả sử \(a\ge b\). Khi đó ta cần chứng minh bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên a, b khác 0. Khi đó ta có \(ab=\left(a,b\right)\left[a,b\right]\). Trong đó kí hiệu \(\left(a,b\right)\) và \(\left[a,b\right]\) lần lượt là ƯCLN và BCNN của 2 số a và b. 

 Chứng minh: Giả sử \(a=p_1^{n_1}p_2^{n_2}...p_k^{n_k}\) và \(b=p_1^{m_1}p_2^{m_2}...p_k^{m_k}\) với \(p_1,p_2,...,p_k\) là các số nguyên tố phân biệt và \(n_1,n_2,...,n_k,m_1,m_2,...,m_k\) là các số tự nhiên. Ta có

\(\left(a,b\right)=p_1^{min\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}}\)

và \(\left[a,b\right]=p_1^{max\left\{n_1,m_1\right\}}p_2^{max\left\{n_2,m_2\right\}}...p_k^{max\left\{n_k,m_k\right\}}\)

 \(\Rightarrow\left(a,b\right)\left[a,b\right]=p_1^{min\left\{n_1,m_1\right\}+max\left\{n_1,m_1\right\}}p_2^{min\left\{n_2,m_2\right\}+max\left\{n_2,m_2\right\}}...p_k^{min\left\{n_k,m_k\right\}+max\left\{n_k,m_k\right\}}\)

\(=p_1^{m_1+n_1}.p_2^{m_2+n_2}...p_k^{n_k+m_k}\)

\(=ab\)

 Vậy bổ đề 1 được chứng minh. Áp dụng bổ đề này cho 2 số a, b, ta có \(ab=\left[a,b\right]\left(a,b\right)=300.15=4500\)

 Do \(a\ge b\) \(\Rightarrow4500=ab\ge b^2\Leftrightarrow b\le67\). Mà 15 là ước của b nên \(b\in\left\{15,30,45,60\right\}\)

 \(b=15\) thì \(a=300\), thỏa mãn.

 \(b=30\) thì \(a=150\), không thỏa.

 \(b=45\) thì \(a=100\), không thỏa.

 \(b=60\) thì \(a=75\), thỏa mãn.

 Vậy \(\left(a,b\right)\in\left\{\left(15,300\right);\left(300,15\right);\left(60,75\right);\left(75,60\right)\right\}\)  là các cặp số a, b thỏa mãn yêu cầu bài toán.

21 tháng 11 2021

Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15

Suy ra: a.b = 300.15 = 4500

Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).

Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.

Mà a.b =4500 nên ta có: 15m.15n =4500=>15.15.m.n =4500=> m.n  = 20

Suy ra: m=1 và n=20 hoặc  m=4 và n=5

6 tháng 4 2017

a) ƯCLN(a,b)=15     .          Giả sử a<b

=>a=15k

   b=15l      (a,b\(\in\) N,  (k,l)=1)     =>k<l

a.b=15k.15l=15.300=4500

=>225kl=300

kl=20

a+15=b

=>15k+15=15l

=>15(k+1)=15l

=>k+1=l

=>k(k+1)=20

=>k=4, l=5

=>a=15.4=60

b=15.5=75

b) Ta có ab-ba=9.(a-b)=32.(a-b)

Để ab-ba là số chính phương thì a-b là số chính phương

Ta có \(1\le a-b< 9\)

=> \(a-b\in\) {1;4}

a-b=1 => ab \(\in\) {21;32;43;54;65;76;87;98}

Loại các hợp số, còn 43 là số nguyên tố

a-b=4  =>ab \(\in\){51;62;73;84;95}

Loại các hợp số, còn 73 là số nguyên tố

Vậy ab\(\in\){43;73}

18 tháng 2 2016

Ta có:

\(ƯCLN\left(a,b\right)=\frac{a.b}{BCNN\left(a,b\right)}\)

=> \(15=\frac{a.b}{300}\)

=> a.b= 15.300=4500

Thay b = 15+a. Ta được:

( 15 + a ) . a = 4500

Ta thấy : 75.60=4500

Vậy a = 75 và b = 60

18 tháng 2 2016

mink lm cach nay dc ko

25 tháng 3 2015

Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15

Suy ra: a.b = 300.15 = 4500

Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).

Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.

Mà a.b =4500 nên ta có: 15m.15n =4500

                                     15.15.m.n =4500

                                     152.m.n  =4500

                                     225.m.n  =4500

                                   =>    m.n  = 20

Suy ra: m=1 và n=20  hoặc  m=4 và n=5.

Mà m+1 =n =>m=4 và n =5.

Vậy: a= 15.4= 60 ; b= 15.5= 75.

 

18 tháng 2 2016

Ta có:

\(ƯCLN\left(a,b\right)=\frac{a.b}{BCNN\left(a,b\right)}\)

=> \(15=\frac{a.b}{300}\)

=> a.b= 15.300=4500

Thay b = 15+a. Ta được:

( 15 + a ) . a = 4500

Ta thấy : 75.60=4500

Vậy a = 75 và b = 60

30 tháng 1 2016

CHTT NHA BẠN

30 tháng 1 2016

nguyen phuong thao la con nguoi gian doi

4 tháng 8 2016

Do ƯCLN(a; b) = 15

=> a = 15 x m; b = 15 x n (m;n)=1

=> BCNN(a; b) = 15 x m x n = 300

=> m x n = 300 : 15 = 20 (1)

Lại có:

a + 15 = b

15 x m + 15 = 15 x n

=> 15 x (m + 1) = 15 x n

=> m + 1 = n

Từ (1) => m = 4; n = 5

=> a = 4 x 15 = 60; n = 5 x 15 = 75

Vậy a = 60; b = 75

Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15

Suy ra: a.b = 300.15 = 4500

Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).

Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.

Mà a.b =4500 nên ta có: 15m.15n =4500

                                     15.15.m.n =4500

                                     225.m.n  =4500

                                     225.m.n  =4500

                                   =>    m.n  = 20

Suy ra: m=1 và n=20  hoặc  m=4 và n=5.

Mà m+1 =n =>m=4 và n =5.

Vậy: a= 15.4= 60 ; b= 15.5= 75

4 tháng 2 2017

ta có BCNN (a,b) = 300 

=> 300 chia hết cho a 

300 chia hết cho b 

ta lại có UCLN(a,b) = 15 

=> a= 15m 

b= 15n 

ta tiếp tục có 

15m + 15 = 15 n 

=> 15(m+1) = 15n 

=> m+1 = n

28 tháng 2 2021

ta có BCNN (a,b) =300

=> 300 : hết cho a

300: hết cho b

ta lại có UCLN(a,b) = 15

=>a= 15m

b =15n ta tiếp tục có

15m + 15= 15n

=> 15(m+1) = 15n

=>m+1= n