Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)
\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)
Vậy a = 1; b = 86; c = 1; d = 1; e = 11
Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100
Thay \(a+b+c\) vào \(A\) ta được:
\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)
\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
Ta có:
\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế ta được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
Lại có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế ta lại được:
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)
Vậy \(A\) không phải là số nguyên (Đpcm)
cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui
Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\)
suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)
=> A > 1
a) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) xy = 2 - y
xy + y = 2
y . ( x + 1 ) = 2
vì x,y thuộc Z nên ta có bảng sau :
x+1 | 1 | 2 | -1 | -2 |
y | 2 | 1 | -2 | -1 |
x | 0 | 1 | -2 | -3 |
Vậy ...
Đề phải là cm a+b/b = c+d/d chứ bạn
Đk : b,d khác 0
Có : a/b=c/d
=> a/b + 1 = c/d + 1
=> a+b/b = c+d/d
=> ĐPCM
Tk mk nha