Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 + 2 + 3 + ... + n = 231
=> \(\frac{\left(1+n\right).n}{2}=231\)
=> (1 + n).n = 231.2
=> (1 + n).n = 462 = 21.22
=> n = 21
Vậy n = 21
b) 11 + 12 + ... + n = 176
=> \(\frac{11+n}{2}.\left(\frac{n-11}{1}+1\right)=176\)
=> (11 + n).(n - 10) = 176.2
=> (11 + n).(n - 10) = 352 = 32.11
=> n - 10 = 11; 11 + n = 32
=> n = 21
Vậy n = 21
c) 1 + 3 + 5 + ... + (2n - 1) = 169
\(\frac{\left(2n-1+1\right)}{2}.\left(\frac{2n-1-1}{2}+1\right)=169\)
=> \(\frac{2n}{2}.\left(\frac{2n-2}{2}+1\right)=169\)
=> n.(n - 1 + 1) = 169
=> n2 = 169 = 132
Vậy n = 13
Từ giả thiết ta dễ có \(a+b+c+d+e⋮60\Rightarrow4a,5c⋮60\Rightarrow a⋮15;c⋮12\)
\(\Rightarrow a\ge15;c\ge12\)
Ta có phép biến đổi sau:
\(3\left(a+b+c+d+e\right)=3a+4b+5c\)
\(\Rightarrow3\left(d+e\right)=b+2c\ge15+2\cdot19\Rightarrow d+e\ge13\)
Đẳng thức xảy ra tại b=15; c=12 => a=2;\(d\le13;e\le13\Rightarrow a=20\) là giá trị lớn nhất cần tìm
Ta có:
\(a^3+3a^2+5=5^b\Leftrightarrow a^2\left(a+3\right)+5=5^b\Leftrightarrow a^2.5^c+5=5^b\Leftrightarrow a^2.5^{c-1}+1=5^{b-1}\)
=> b-1 = 0 hoặc c-1 =0
Nếu b-1 = 0 thay vào ko t/mãn
Nếu c-1 = 0 => c=1 => a=2=> b=2
Vậy a=2 ; b=2 ; c=1
Trần Thùy Dung nhầm rồi, bài có 2 dữ kiện chứ không phải 2 phần đâu!