Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\) (1)
Do \(\left(2a+1\right)^2\ge0\)
\(\left(b+3\right)^4\ge0\)
\(\left(5c-6\right)^2\ge0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
\(\left(1\right)\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
\(\Rightarrow\left(2a+1\right)^2=0;\left(b+3\right)^4=0;\left(5c-6\right)^2=0\)
*) \(\left(2a+1\right)^2=0\)
\(\Rightarrow2a+1=0\)
\(2a=-1\)
\(a=-\dfrac{1}{2}\)
*) \(\left(b+3\right)^4=0\)
\(\Rightarrow b+3=0\)
\(b=-3\)
*) \(\left(5c-6\right)^2=0\)
\(\Rightarrow5c-6=0\)
\(5c=6\)
\(c=\dfrac{6}{5}\)
Vậy \(a=-\dfrac{1}{2};b=-3;c=\dfrac{6}{5}\)
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
tất cả đều mũ chẳn nên lớn hơn hoặc bằng 0 => để thõa mãn các tổng cộng lại bằng 0 => mỗi tổng bằng 0
a, Vì \(\hept{\begin{cases}\left(12a-9\right)^2\ge0\\\left(8b+1\right)^4\ge0\\\left(c+15\right)^6\ge0\end{cases}\Rightarrow\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\ge0}\)
Mà \(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\le0\)
\(\Rightarrow\hept{\begin{cases}\left(12a-9\right)^2=0\\\left(8b+1\right)^4=0\\\left(c+15\right)^6=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{-1}{8}\\c=-15\end{cases}}}\)
b, tương tự a
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
Ta có \(\left|3a+1\right|\ge0\) \(\forall a\)
\(\left(3b-1\right)^{106}\ge0\) \(\forall b\)
\(\left(\frac{1}{6}-2c\right)^{20}\ge0\) \(\forall c\)
=> \(\left|3a+1\right|+\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}\ge0\) \(\forall a,b,c\)
mà \(\left|3a+1\right|+\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}\le0\)
\(\Leftrightarrow\left|3a+1\right|\left(3b-1\right)^{106}+\left(\frac{1}{6}-2c\right)^{20}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|3a+1\right|=0\\\left(3b-1\right)^{106}=0\\\left(\frac{1}{6}-2c\right)^{20}=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3a+1=0\\3b-1=0\\\frac{1}{6}-2c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=\frac{1}{3}\\c=\frac{1}{12}\end{cases}}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
(\(x-3\))2 + (2y - 1)2 = 0
(\(x\) - 3)2 ≥ 0 ∀ \(x\)
(2y - 1)2 ≥ 0 ∀ y
⇔ (\(x\) - 3)2 + (2y - 1)2= 0
⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)
(4\(x-3\))4 + (y + 2)2 ≤ 0
(4\(x\) - 3)4 ≥ 0 ∀ \(x\)
(y + 2)2 ≥ 0 ∀ y
⇔(4\(x\) - 3)4 + (y+2)2 ≥ 0
⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔
⇔\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)
Vì \(\left(2a+1\right)^2\ge0;\left(b+3\right)^4\ge0;\left(5c-6\right)^4\ge0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\)
Mà theo đề bài: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
\(\Rightarrow\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2a+1=0\\b+3=0\\5c-6=0\end{cases}\)\(\Rightarrow\begin{cases}2a=-1\\b=-3\\5c=6\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}\)
Vậy \(a=\frac{-1}{2};b=-3;c=\frac{6}{5}\)