Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{5}=\frac{b}{6}=>\frac{a}{20}=\frac{b}{24}\)(1)
\(\frac{b}{8}=\frac{c}{7}=>\frac{b}{24}=\frac{c}{21}\)(2)
Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{24}=\frac{c}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{20}=\frac{b}{24}=\frac{c}{21}=\frac{a+b-c}{20+24-21}=\frac{69}{23}=3\)
Từ \(\frac{a}{20}=3=>a=60\)
Từ \(\frac{b}{24}=3=>b=72\)
Từ \(\frac{c}{21}=3=>c=63\)
Vậy a=60 , b=72 , c=63
Ta có \(\frac{a}{5}=\frac{b}{6}=>\frac{a}{15}=\frac{b}{18}\)(1)
\(\frac{b}{8}=\frac{c}{7}=>\frac{b}{18}=\frac{c}{14}\)(2)
Từ (1) và (2) => \(\frac{a}{15}=\frac{b}{18}=\frac{c}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{15}=\frac{b}{18}=\frac{c}{14}=\frac{a+b-c}{15+18-14}=\frac{69}{19}\)
=> \(\frac{a}{15}=\frac{69}{19}.15=54\frac{9}{19}\)
và \(\frac{b}{18}=\frac{69}{19}.18=65\frac{7}{19}\)
và \(\frac{c}{14}=\frac{69}{19}.14=50\frac{16}{19}\)
Vậy a = \(54\frac{9}{19}\); b = \(65\frac{7}{19}\); c = \(50\frac{16}{19}\)
a/5 = b/6 => a/20 = b/24
b/8 = c/7 => b/24 = c/21
=> a/20 = b/24 = c/21
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/20 = b/24 = c/21 = a+b+c/20+24+21 = 69/65 (số hơi lẻ)
a/20 = 69/65 => a = 276/13
b/24 = 69/65 => b = 1656/65
c/21 = 69/65 => c = 1449/65
\(\frac{a}{40}=\frac{b}{48}=\frac{c}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{40}=\frac{b}{48}=\frac{c}{42}=\frac{a+b+c}{40+48+42}=\frac{69}{130}\)
\(\frac{a}{40}=\frac{69}{130}\Rightarrow a=\frac{276}{13}\)
\(\frac{b}{48}=\frac{69}{130}\Rightarrow b=\frac{1656}{65}\)
\(\frac{c}{42}=\frac{69}{130}\Rightarrow c=\frac{1449}{65}\)
mk làm đầu tiên bạn nhé
a) \(3a=4b\Rightarrow\frac{a}{4}=\frac{b}{3}\)
Áp dụng dãy tỉ số bằng nhau , có : \(\frac{a}{4}=\frac{b}{3}=\frac{b-a}{3-4}=\frac{5}{-1}=-5\)
\(\Rightarrow a=-5\cdot4=-20\)
\(\Rightarrow b=-5\cdot3=-15\)
b) Từ \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{6}=\frac{b}{4}\) (1)
Tương tự : \(3b=4c\Rightarrow\frac{b}{4}=\frac{c}{3}\)(2) ;
Từ (1) và (2) ta có : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b+c}{6-4+3}=\frac{35}{5}=7\)
\(\Rightarrow a=7\cdot6=42\)
\(\Rightarrow b=7\cdot4=28\)
\(\Rightarrow c=7\cdot3=21\)
c) \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{a}{40}=\frac{b}{48}\) ; \(\frac{b}{8}=\frac{c}{7}\Rightarrow\frac{b}{48}=\frac{c}{42}\)
\(\Rightarrow\frac{a}{40}=\frac{b}{48}=\frac{c}{42}\)
Áp dụng t/c dãy tỉ số = nhau : \(\frac{a}{40}=\frac{b}{48}=\frac{c}{42}=\frac{a+b-c}{40+48-42}=\frac{69}{46}=\frac{3}{2}\)
\(\Rightarrow a=\frac{3}{2}.40=60\)
\(\Rightarrow b=\frac{3}{2}.48=72\)
\(c=\frac{3}{2}.42=63\)
ta có a+b/6=b+c/7=a+c/8 va a+b+c=14
Áp dụng ....
a+b/6= b+c/7 = a+c/8 = a+b+c/21=14/21=2/3
suy ra: a/6=2/3 = 6.2/3= 4
b=7=7.2/3=14/3
c=8=8.2/3=16/3
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a-1}{9}=\frac{b-2}{8}=\frac{c-3}{7}=....=\frac{i-9}{1}=\frac{\left(a-1\right)+\left(b-2\right)+\left(c-3\right)+...+\left(i-9\right)}{9+8+7+...+1}=\frac{\left(a+b+c+..+i\right)-\left(1+2+3+...+9\right)}{1+2+3+...+9}\)
=> \(\frac{a-1}{9}=\frac{b-2}{8}=\frac{c-3}{7}=....=\frac{i-9}{1}=\frac{90-45}{45}=1\)
=> a - 1 = 9 ; b - 2 = 8; c - 3 = 7; d- 4 = 6; e - 5 = 5; f - 6 = 4; ...; i - 9 = 1
=> a = 10; b = 10; c = 10= d = ..= i
\(\frac{a-1}{9}=\frac{b-2}{8}=\frac{c-3}{7}=...=\frac{i-9}{1}=\frac{\left(a-1\right)+\left(b-2\right)+\left(c-3\right)+...+\left(i-9\right)}{9+8+7+...+1}=\frac{\left(a+b+c+...+i\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)\(=\frac{90-\frac{9.10}{2}}{\frac{9.10}{2}}=\frac{90-45}{45}=\frac{45}{45}=1\)
=> a = 9 + 1 = 10
b = 8 + 2 = 10
c = 7 + 3 = 10
....
i = 1 + 9 = 10
Vậy a = b = c = ... = i = 10
a=51,75
b=138
c=120,75
Ta có: a/3 = b/8 = c/7 và a+b-c= 69
Theo tính chất của dãy tỉ số bằng nhau
a/3 = b/8 = c/7 = a+b-c/3+8-7 = 69/4= 17,25
a/3= 17,25 suy ra a = 3 x 17,25= 51,75
b/8= 17,25 suy ra b = 8 x 17,25= 138
c/7= 17,25 suy ra c = 7 x 17,25= 120,75