\(\frac{1}{2}\cdot a=\frac{2}{3}\cdot b=\frac{3}{4}c\)và a-b=15

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$

$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$

$\Rightarrow 3a-2b=2c-5a=5b-3c=0$

$\Rightarrow 3a=2b; 2c=5a$

$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$

Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$

$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$

17 tháng 10 2019

\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm

17 tháng 10 2019

Đợi tí nha bạn Phạm Mai Linh

3 tháng 7 2019

a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)

       \(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)

       \(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\) 

       \(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)

       \(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)

       \(=3.\frac{196}{597}\)

       \(=\frac{196}{199}\)

\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)

\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)

\(\Leftrightarrow-14ad+14bc=39ad-39bc\)

\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)

=>ad-bc=0

=>ad=bc

hay a/b=c/d

 

3 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)

\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)

\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)