Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
Ta có : (-2*a^2*b^3)^2010 >=0(vì số mũ chẵn)
(3*b^2*c^4)^2011>=0( vì 3*b^2*c^4>=0)
vậy tổng trên =0 <=> (-2*a^2*b^3)^2010=0 hoặc (3*b^2*c^4)^2011=0
đến đây bn tự lm nhé và phân ra từng trường hợp ởkhúc sau nhak
Tìm a, b, c biết:
a) (2a+1)^2+(b+3)^4=0
b) (a-7)^2+(3b+2)^2+(4c-5)^6<0
Giúp mik với nhé!
Các bn hok tốt!
\(\left(2x+1\right)^2+\left(b+3\right)^4=0\)
Mà \(\left(2a+1\right)^2\ge0\forall x;\left(b+3\right)^4\ge0\forall b\)
\(\left(2a+1\right)^2+\left(b+3\right)^4=0\)chỉ khi: \(\hept{\begin{cases}\left(2a+1\right)^2=0\Rightarrow2a+1=0\Rightarrow a=\frac{-1}{2}\\\left(b+3\right)^4=0\Rightarrow b+3=0\Rightarrow b=-3\end{cases}}\)
\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6\le0\)
Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< 0\)=> Vô lý
Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6=0\)
\(\Rightarrow\left(a-7\right)^2=0\Rightarrow a-7=0\Rightarrow a=7\)
\(\Rightarrow\left(3b+2\right)^2=0\Rightarrow3b+2=0\Rightarrow3b=-2\Rightarrow b=\frac{-2}{3}\)
\(\Rightarrow\left(4c-5\right)^6=0\Rightarrow4c-5=0\Rightarrow4c=5\Rightarrow c=\frac{5}{4}\)
Lời giải:
Ta thấy:
$(-2a^2b^3)^2\geq 0$ với mọi $a,b$
$(3b^2c^4)^5=3^5(b^5c^{10})^2\geq 0$ với mọi $b,c$
Do đó để tổng của chúng bằng $0$ thì:
$-2a^2b^3=b^5c^{10}=0$
$\Rightarrow ab=bc=0$
$\Rightarrow$ (a,b,c)=(a,0,c), (0,b,0)$