K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

thanghoa

8 tháng 11 2017

c.(3c+a+2b)=25

9 tháng 11 2017

gia linh mập

lêu lêu

11 tháng 2 2022

Theo tc dãy tỉ số bằng nhau 

\(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}=\frac{a+2b+3c-6b-9c-3a}{3c+a+2b}\)

\(=\frac{a+2b+3a-3\left(2b+3c+a\right)}{3c+a+2b}=\frac{-2.72}{72}=-2\)

\(\Rightarrow a-6b=-6c;3c-3a=-4b\Leftrightarrow3a-4b=3c\)

ta có hệ \(\hept{\begin{cases}a-6b=-6c\\3a-4b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}3a-18b=-18c\\3a-4b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}-14b=-21c\left(1\right)\\a=-6c+6b\left(2\right)\end{cases}}}\)

Theo giả thiết \(a+2b+3c=72\Rightarrow a=-2b-3c-72\)

\(\Rightarrow-2b-3c-72=-6c+6b\Leftrightarrow8b-3c+72=0\Leftrightarrow8b-3c=-72\)

(1) => \(\frac{b}{-21}=\frac{c}{-14}\)Theo tc dãy tỉ số bằng nhau 

\(\frac{b}{-21}=\frac{c}{-14}=\frac{8b-3c}{8\left(-21\right)-3\left(-14\right)}=-\frac{72}{-126}=\frac{4}{7}\Rightarrow b=-12;c=-8\)

Thay vào (2) vậy \(a=-6c+6b=-6\left(-8\right)+6\left(-12\right)=48-72=-24\)

13 tháng 12 2023

Sửa đề:

Tìm ba số a, b, c biết:

5a = 8b, b = 3c và a - 2b + c = 34

Giải:

5a = 8b ⇒ a/8 = b/5 ⇒ a/24 = b/15 (1)

b = 3c ⇒ b/3 = c/1 ⇒ b/15 = c/5 (2)

Từ (1) và (2) ⇒ a/24 = b/15 = c/5

⇒ a/24 = 2b/30 = c/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a/24 = 2b/30 = c/5 = (a - 2b + c)/(24 - 30 + 5) = 34/(-1) = -34

a/24 = -34 ⇒ a = -34.24 = -816

b/15 = -34 ⇒b = -34.15 = -510

c/5 = -34 ⇒ c = -34.5 = -170

Vậy a = -816; b = -510; c = -170

13 tháng 12 2023

.

18 tháng 6 2016

Ta có:

\(\frac{2a}{3}=\frac{3b}{4}\Rightarrow\frac{2a}{3}:6=\frac{3b}{4}:6\)

\(\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a}{27}=\frac{b}{24}\) ( 1 )

\(\frac{1}{4}\left(2b\right)=\frac{1}{5}\left(-3c\right)\Rightarrow\frac{b}{2}=\frac{-3c}{5}\Rightarrow\frac{b}{2}:3=-\frac{3c}{5}:3\)

\(\Rightarrow\frac{b}{6}=\frac{c}{-5}\Rightarrow\frac{b}{24}=\frac{c}{-20}\) (2 )

Từ (1) và ( 2) có:

\(\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}\)

\(\Rightarrow\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{27}=\frac{2b}{48}=\frac{3c}{-60}=\frac{a-2b+3c}{27-48+\left(-60\right)}=\frac{1}{-81}\)

\(\Rightarrow\frac{a}{27}=\frac{b}{24}=\frac{c}{-20}=-\frac{1}{81}\)

\(\Rightarrow a-b-c=-\frac{1}{81}\left[27-24-\left(-20\right)\right]=-\frac{1}{81}.23=-\frac{23}{81}\)

 

 

 

 

 

 

8 tháng 8 2023

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

\(\Rightarrow\dfrac{2a+3c}{2a-3c}=\dfrac{2b+3d}{2b-3d}\)

\(\Rightarrow dpcm\)