Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2a=3b\) \(\Rightarrow\) \(\frac{a}{3}=\frac{b}{2}\) \(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\) \(\Rightarrow\) \(\frac{b}{7}=\frac{c}{5}\) \(\Rightarrow\) \(\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
( Tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\) \(a=42;b=28;c=20\)
Ta có : 4a = 3b => 28a = 21b (1)
7b = 5c => 21b = 15c (2)
Từ (1) và (2) => 28a = 21b = 15c
Ta có : 28a = 21b = 15c \(=\frac{a}{\frac{1}{28}}=\frac{b}{\frac{1}{21}}=\frac{c}{\frac{1}{15}}=\frac{2a}{\frac{1}{14}}=\frac{3b}{\frac{1}{7}}=\frac{2a+3b-c}{\frac{1}{14}+\frac{1}{7}-\frac{1}{15}}=\frac{186}{\frac{31}{210}}=1260\)
Nên : 28a = 1260 => a = 45
21b = 1260 => b = 60
15c = 1260 => c = 84
Vậy ........................
Ta có:
\(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a}{15}=\frac{b}{20}\left(1\right)\)
\(7b=5c\)=>\(\frac{b}{5}=\frac{c}{7}\) => \(\frac{b}{20}=\frac{c}{28}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)=>\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)
=>\(\frac{a}{15}=3\)=>\(a=45\)
\(\frac{b}{20}=3\)=>\(b=60\)
\(\frac{c}{28}=3\)=>\(c=84\)
Vậy \(a=40;b=60;c=84\)
Ta có: \(2a=3b\)=> \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\)=>\(\frac{b}{7}=\frac{c}{5}\) =>\(\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\)
=>\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
=>\(\frac{a}{21}=2\)=>\(a=42\)
\(\frac{b}{14}=2\)=>\(b=28\)
\(\frac{c}{10}=2\)=>\(c=20\)
Vậy \(a=42;b=28;c=20\)
3a+5c=7b+30
=>3a+5c-7b=30
\(2a=3b=>\frac{a}{3}=\frac{b}{2}=>\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
\(5b=7c=>\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
\(=>\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
\(=>\frac{a}{21}=2=>a=21.2=42\)
\(=>\frac{b}{14}=2=>b=14.2=28\)
\(=>\frac{c}{10}=2=>c=10.2=20\)
Vậy a=42,b=28,c=20.
minh tran
ta có 2a=3b =>a=3b/2
5b=7c =>c=5b/7
=>3.3b/2+5.5b/7+7b=30
=>9b/2+25b/7+7b=30
=>63b/14+50b/14+93b/14=30
=>211b/14=30
=>211/14.b=30
=>211/14.30=b
=>6330/14=b
=>3165/7=b
=>9495/7=3b=2a
=>a=9495/14
tương tự c= vượt giới hạn tính
\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{3.7}=\frac{b}{2.7}\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{7.2}=\frac{c}{5.2}\Rightarrow\frac{b}{14}=\frac{c}{10}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
=> a = 21k
b = 14k
c = 10k
Thay vào biểu thức 3a + 5c - 7b = 30 , ta có :
3a + 5c - 7b = 30
=> 3.21k + 5.10k - 7.14k = 30
=> 63k + 50k - 98k = 30
=> (63 + 50 - 98)k = 30
=> 15k = 30
=> k = 2
\(\Rightarrow\hept{\begin{cases}a=21k=21.2=42\\b=14k=14.2=28\\c=10k=10.2=20\end{cases}}\)
\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a-7b+5c}{3\cdot21-7\cdot14+5\cdot10}=\frac{-30}{15}=-2\)
a = - 42; b = - 28; c = - 20
\(2a=3b\Leftrightarrow\frac{a}{3}=\frac{b}{2}\Leftrightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\Leftrightarrow\frac{b}{7}=\frac{c}{5}\Leftrightarrow\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Còn lại áp dụng tính chất dãy tỉ số rồi tìm kết quả nha .
Ta có : 2a = 3b , 5b = 7c
=> 10a = 15b = 21c
=> \(\frac{a}{\frac{1}{10}}=\frac{b}{\frac{1}{15}}=\frac{c}{\frac{1}{21}}\)
Áp dụng t/c DTSBN :
\(\frac{a}{\frac{1}{10}}=\frac{b}{\frac{1}{15}}=\frac{c}{\frac{1}{20}}=\frac{3a-7b+5c}{\frac{3}{10}-\frac{7}{15}+\frac{5}{21}}=-\frac{30}{\frac{1}{14}}=-420\)
=> a = -42
=> b = -28
=> c = - 21