Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ƯCLN(a;b)=3750:150=25
Ta có: a=25.m và b=25.n với ƯCLN(m;n)=1
mặt khác: a.b=3750 \(\Rightarrow\)25.m.25.n= 3750 hay m.n=6
Nếu m=1 và n=6 thì a=25 và b=150
Nếu m=6 và n=1 thì a=150 và b=25
a) Ta có ƯCLN(a;b).BCNN(a;b) = a.b
=> a.b = 6.36 = 216
Vì ƯCLN(a;b) = 6
=> a = 6m ; b = 6n (ƯCLN(m;n) = 1)
Khi đó a.b = 216
<=> 6m.6n = 216
=> m.n = 6
Ta có 6 = 1.6 = 2.3
Lập bảng xét các trường hợp
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a | 6 | 36 | 12 | 18 |
b | 36 | 6 | 18 | 12 |
Vậy các cặp số (a;b) thỏa mãn là : (36;6) ; (6;36) ; (12;18) ; (18;12)
b) Ta có ƯCLN(a;b) . BCNN(a;b) = a.b
=> ƯCLN(a;b) . 150 = 3750
=> ƯCLN(a;b) = 25
Đặt a = 25m ; b = 25n (ƯCLN(m;n) = 1)
Khi đó a.b = 3750
<=> 25m.25n = 3750
=> m.n = 6
Ta có 6 = 1.6 = 2.3
Lập bảng xét các trường hợp
m | 1 | 6 | 2 | 3 |
n | 6 | 1 | 3 | 2 |
a | 25 | 150 | 50 | 75 |
b | 150 | 25 | 75 | 50 |
Vậy các cặp số (a;b) thỏa mãn là : (25;150) ; (150;25) ; (50;75) ; (75;50)
c) Ta có ƯCLN(a;b) . BCNN(a;b) = 180
=> ƯCLN(a;b) . 20.ƯCLN(a;b) = 180
=> [ƯCLN(a;b)]2 = 9
=> ƯCLN(a;b) = 3
Đặt a = 3m ; b = 3n (ƯCLN(a;b) = 1)
Khi đó a.b = 180
<=> 3m.3n = 180
=> m.n = 20
Ta có 20 = 1.20 = 4.5
Lập bảng xét các trường hợp
m | 1 | 20 | 4 | 5 |
n | 20 | 1 | 5 | 4 |
a | 3 | 60 | 12 | 15 |
b | 60 | 3 | 15 | 12 |
Vậy các cặp số (a;b) thỏa mãn là : (3;60) ; (60;3) ; (12;15) ; (15;12)
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,
Gọi 2 số tự nhiên đó lần lượt là a và b.
Vì ƯCLN(a,b) = 24 nên ta có: a = 24m: b = 24n với (m,n) = 1
Vì a + b = 288 nên 24m + 24n = 288 24.(m + n) = 288 => m + n = 288 : 24 = 12 Vì ƯCLN(m,n) = 1 và m + n = 12 ta có:
m 7 12 5 1 => a 168 288 120 24
n 5 1 7 12 b 120 24 168 288
Vì 24 + 288 > 288
Vậy (a,b)=(168;120);(120;168)
CHÚC BẠN HỌC TỐT
Theo công thức ta có:
a.b=BCNN(a,b).UCLN(a,b)=360
=> UCLN(a,b)=6
Đặt: a=6m; b=6n
=> mn=10=>m;n E {(1;10);(2;5);(5;2);(10;1)}
=> a;b E {(6;60);(12;30);(30;12);(60;6)}
b, tương tự cách làm trên
a) a.b=360,BCNN(a,b)=60
Ta có:ƯCLN(a,b).BCNN(a,b)=a.b
ƯCLN(a,b).60=360
ƯCLN(a.b)=6
Suy ra a=6m,b=6n với ƯCLN(m,n)=1
thay a=6m,b=6n vào a.b=360 ta được
6m.6n=360
36mn=360
mn=10
m | 5 | 1 | 2 | 10 |
n | 2 | 10 | 5 | 2 |
do đó
a | 30 | 6 | 12 | 60 |
b | 12 | 60 | 30 | 6 |
(câu b gần giống )
Vì UCLN(a,b) = 25 \(\Rightarrow\hept{\begin{cases}a=25.x\\b=25.y\end{cases}}\)(x,y \(\in\)N và ƯCLN(x,y)=1)
Ta có: a.b = 3750
=>25x.25y = 3750
=>(25.25).(x.y) = 3750
=>625.(x.y) = 3750
=>x.y = 3750 : 625
=>x.y = 6
=>x và y thuộc Ư(6)={1;2;3;6}
+) Nếu x = 1,2,3,6 => y = 6,3,2,1
\(\Rightarrow\hept{\begin{cases}x=25.1=25\\y=25.6=150\end{cases}}\)hoặc\(\hept{\begin{cases}x=25.2=50\\y=25.3=75\end{cases}}\)hoặc\(\hept{\begin{cases}x=25.3=75\\y=25.2=50\end{cases}}\)hoặc \(\hept{\begin{cases}x=25.6=150\\y=25.1=25\end{cases}}\)
Các cặp giá trị (a,b) tương ứng là (25,150) ; (50,75) ; (75,50) ; (150,25)