Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tín chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{7}=\frac{x.y}{4.7}=\frac{112}{28}=4\)
\(\frac{x}{4}=4\Rightarrow x=4.4=16\)
1. \(\frac{x}{4}=\frac{y}{7}\)và \(xy=112\)
đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
ta có:\(xy=4k\cdot7k=28k^2=112\)
\(\Rightarrow k^2=112:28=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
TH1: \(\hept{\begin{cases}x=2\cdot4=8\\y=2\cdot7=14\end{cases}}\)
TH2: \(\hept{\begin{cases}x=-2\cdot4=-8\\y=-2\cdot7=-14\end{cases}}\)
Ta có:
\(\frac{a}{4}=\frac{b}{7}\) và \(ab=112\)
\(\Rightarrow a=4k;b=7k\) và \(ab=112\)
\(\Leftrightarrow4k.7k=112\Leftrightarrow28k^2=112\)
\(\Rightarrow k=\hept{\begin{cases}2\\-2\end{cases}}\)
\(\Rightarrow a=2.4=8;a=-2.4=-8\)
\(\Rightarrow b=2.7=14;-2.7=-14\)
Vậy \(a\in\left\{8;-8\right\};b\in\left\{14;-14\right\}\)
Bài 1:
a) \(\frac{x}{-15}=\frac{-60}{x}\Rightarrow x^2=\left(-60\right).\left(-15\right)=900\Rightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)
Bài 2: Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
\(\Rightarrow xy=4k.7k=28k^2=112\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
\(\Rightarrow\orbr{\begin{cases}x=4.2=8\\x=-4.2=-8\end{cases}}\)
Và \(\orbr{\begin{cases}y=7.2=14\\y=-7.2=-14\end{cases}}\)
Bài 3: \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow\frac{4}{3}:\frac{4}{5}=\frac{2}{3}:\frac{1}{10}x\Rightarrow\frac{5}{3}=\frac{2}{3}:\frac{1}{10}x\)
\(\Rightarrow\frac{1}{10}x=\frac{2}{5}\Rightarrow x=4\)
Mk trả lời nốt bài 4 hộ bn MMS_Hồ Khánh Châu nha:
Bài 4:
Gọi x là giá trị chung của 2 phân số trên.
Ta có: \(\frac{a}{b}=\frac{c}{d}=x\)
\(\Rightarrow a=x.b
\)
\(c=x.d\)
Ta lại có:
\(\frac{a+c}{b+d}=\frac{x.b+x.d}{b+d}=\frac{x.\left(b+d\right)}{b+d}=x\)
Và \(\frac{a}{b}=x\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Hk tốt nha
đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
Mà xy = 112
\(\Rightarrow\)4k . 7k = 112
28k2 = 112
k2 = 112 : 28
k2 = 4
k = 2 hoặc k = -2
với k = 2 thì : x = 8 ; y = 14
với k = -2 thì : x = -8 ; y = -14
Vậy ...
b) vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b;b=c;c=a\)
\(\Rightarrow a=b=c\)
3.
gọi số tờ tiền loại 2000đ , 5000đ , 10000đ lần lượt là a,b,c và a + b + c = 16
Theo bài ra : 2000a = 5000b = 10000c
\(\Rightarrow\frac{a}{5}=\frac{b}{2}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{5}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{5+2+1}=\frac{16}{8}=2\)
\(\Rightarrow a=10;b=4;c=2\)
Vậy có 10 tờ tiền 2000đ, 4 tờ tiền 5000đ, 2 tờ tiền 10000đ
Đặt: \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow x=4k;y=7k\)
\(\Rightarrow xy=4k.7k=112\)
\(\Rightarrow28k^2=112\)
\(\Rightarrow k^2=\frac{112}{28}=4\)
\(\Rightarrow\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)
Với \(k=2\) \(\Rightarrow\left[\begin{array}{nghiempt}x=4k=2.4=8\\y=7k=2.7=14\end{array}\right.\)
Với \(k=-2\Rightarrow\left[\begin{array}{nghiempt}x=4k=-2.4=-8\\y=7k=-2.7=-14\end{array}\right.\)
Đặt \(\frac{x}{4}=\frac{y}{7}\) = k
=> x = 4k; y = 7k
Ta thay vào: x . y = 112
=> 4k . 7k = 112
=> 28 . k2 = 112
=> k2 = 112 : 28
=> k2 = 4
=> k = 2 hoặc k = -2
Nếu k = 2 => x = 4 . 2 = 8; y = 7k = 7 . 2 = 14
Nếu k = -2 => x = 4 . (-2) = -8; y = 7 . (-2) = -14
Vậy x = {-8; 8} và y = {-14; 14}
a)
\(A=\left(\frac{19}{24}-\frac{7}{24}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}\)
\(A=\frac{1}{3}\)
\(B=\left(\frac{7}{12}-\frac{5}{12}\right)+\left(\frac{5}{6}+\frac{1}{4}-\frac{3}{7}\right)\)
\(B=\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{1}{4}-\frac{3}{7}\)
\(B=\frac{5}{4}-\frac{3}{7}\)
\(B=\frac{23}{28}\)
b)
\(x=A-B\)
\(x=\frac{1}{3}-\frac{23}{28}\)
\(x=\frac{-41}{84}\)
Đặt \(\frac{a}{4}=\frac{b}{7}=k\Rightarrow\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)
Khi đó ab = 112
<=> 4k.7k = 112
=> 28k2 = 112
=> k2 = 4
=> k = \(\pm\)2
Nếu k = 2 => a = 8 ; b = 14
Nếu k =- 2 => a = -8 ; b = - 14
Vậy các cặp (a;b) thỏa mãn là (8;14) ; (-8 ; - 14)
Đặt \(\frac{a}{4}=\frac{b}{7}=k\Rightarrow\hept{\begin{cases}a=4k\\b=7k\end{cases}}\)
ab = 112 <=> 4k.7k = 112
<=> 28k2 = 112
<=> k2 = 4
<=> k = ±2
Với k = 2 => \(\hept{\begin{cases}a=4\cdot2=8\\b=7\cdot2=14\end{cases}}\)
Với k = -2 => \(\hept{\begin{cases}a=4\cdot\left(-2\right)=-8\\b=7\cdot\left(-2\right)=-14\end{cases}}\)