Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a = 2 b = 0
b) a = 4 b = 0
c) a = 2 b = 0
d) a = 2; 5; 8 b = 0
Lời giải:
Để $\overline{5a27b}$ chia hết cho $2$ thì $b$ chẵn (1)
Để $\overline{5a27b}$ chia $5$ dư $1$ thì $b=6$ hoặc $b=1$ (2)
Kết hợp (1) và (2) suy ra $b=6$
Để $\overline{5a27b}$ chia $9$ dư $5$ thì $5+a+2+7+b=14+a+b=14+a+6=20+a$ chia $9$ dư $5$
$\Rightarrow a=3$
Vậy $a=3; b=6$
A=5a27b
b sẽ bằng 1 số chia hết cho 2 nhung chia 5 du 1.số đó là 6
A=5a276 có tổng bằng 5+a+2+7+6=20 để 5a276 có tổng bằng 23 thì số đó bằng 3
Vậy a=3; b=6 →A=53 276
NHỚ TK MK NHA
b: Đặt \(A=\overline{5a43b}\)
A chia hết cho 2 và 5 nên A có tận cùng là 0
=>b=0
=>\(A=\overline{5a430}\)
A chia hết cho 9
=>5+a+4+3+0 chia hết cho 9
=>a+12 chia hết cho 9
=>a=6
=>Số cần tìm là 56430
c: Đặt \(B=\overline{735a2b}\)
B chia hết cho 5 và không chia hết cho 2 nên b=5
=>\(B=\overline{735a25}\)
B chia hết cho 9
=>7+3+5+a+2+5 chia hết cho 9
=>a+22 chia hết cho 9
=>a=5
Vậy: Số cần tìm là 735525
d: Đặt \(C=\overline{5a27b}\)
C chia hết cho 2 và 5 nên C có tận cùng là 0
=>b=0
=>\(C=\overline{5a270}\)
C chia hết cho 9
=>5+a+2+7+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
Vậy: Số cần tìm là 54270
e: Đặt \(D=\overline{7a142b}\)
Vì D chia hết cho cả 2 và 5 nên D có tận cùng là 0
=>b=0
=>\(D=\overline{7a1420}\)
D chia hết cho 9
=>7+a+1+4+2+0 chia hết cho 9
=>a+14 chia hết cho 9
=>a=4
=>Số cần tìm là 741420
g: \(X=\overline{40ab}\)
X chia hết cho 2 và 5 nên b=0
=>\(X=\overline{40a0}\)
X chia hết cho 3
=>4+a+0+0 chia hết cho 3
=>a+4 chia hết cho 3
=>\(a\in\left\{2;5;8\right\}\)
\(\overline{5a27b}⋮55\) khi đồng thời chia hết cho 5 và 11
\(\overline{5a27b}⋮5\Rightarrow b=\left\{0;5\right\}\)
Với \(b=0\Rightarrow\overline{5a270}⋮11\Rightarrow\left(5+2\right)-\left(a+7\right)=-a⋮11\Rightarrow a=0\)
(Một số chia hết cho 11 khi hiệu giữa tổng các chữ số ở vị trí lẻ (chẵn) với tổng các chữ số ở vị trí chẵn (lẻ) chia hết cho 11)
Với \(b=5\Rightarrow\overline{5a27b}=\overline{5a275}⋮11\Rightarrow\left(5+2+5\right)-\left(a+7\right)=5-a⋮11\Rightarrow a=5\)
\(\Rightarrow5a27b=\left\{50270;55275\right\}\)