Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ \left(a+1\right)\left(b+2\right)=5\\Vậy:\left(a+1\right);\left(b+2\right)\inƯ\left(5\right)=\left\{1;5\right\}\\ TH1:a+1=1\Rightarrow a=0;b+2=5\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=5\Rightarrow a=4;b+2=1\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ \Rightarrow\left(a;b\right)=\left(4;-1\right)\)
\(2,\\ \left(a+1\right).\left(b+3\right)=6\\ \Rightarrow\left(a+1\right);\left(b+3\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\\ \Rightarrow TH1:a+1=1\Rightarrow a=0;b+3=6\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=2\Rightarrow a=1;b+3=3\Rightarrow b=0\left(Nhận,vì:a>b\right)\\ TH3:a+1=3\Rightarrow a=2;b+3=2\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ TH4:a+1=6\Rightarrow a=5;b+3=1\Rightarrow b=-2\left(Nhận,vì:a>b\right)\\ Vậy:\left(a;b\right)=\left(1;0\right).hoặc\left(a;b\right)=\left(2;-1\right).hoặc\left(a;b\right)=\left(5;-2\right)\)
Lời giải:
a.
$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})....(1-\frac{1}{2011})$
$=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2010}{2011}$
$=\frac{1.2.3...2010}{2.3.4...2011}$
$=\frac{1}{2011}$
b.
$a=35:(3+4)\times 3=15$
$b=35-15=20$
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
1/4+1/4=2/4=1/2
ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)=\(\frac{1}{2}\)
=> a+b=2
=>(a;b)=(1;1)