Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn có thể tham khảo vào chtt đó chứ giải ra dài quá làm biếng hihi!!!
2436547
MÌNH THẤY CHỊ HOA LƯU LY LÀM THẾ NÀY:
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n -m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=> n=11; m=13
TH2: 2n-m=3 và 2n+m=105 <=> n=27; m=51
TH3: 2n-m=5 và 2n+m=67 <=> n=17; m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13; m=19
TH5: 2n-m=15 và 2n+m=21 <=>n=9; m=3
Ta có: a+71=n2
=> a lớn nhất khi n lớn nhất
=> n=27
=> a=272-71=658
Vậy max a=658
VÀ ANH HUỲNH THIỆN TÀI THÌ Ý KIẾN LÀ: còn trường hợp 1*315 thì sao? ra a max = 6170
Bạn mún hỉu sao thì tùy, mình mới lớp 7, hổng hỉu gì hết ^^!
Tham khảo ở đây:
https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn
\(n^2+n+6=a^2\)
\(\Rightarrow4n^2+4n+24=4a^2\)
\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)
\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)
\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)
Theo (1) ta thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)
Từ đó ta tìm được , .
Vậy n=5 là giá trị cần tìm
Đặt \(A=2^4+2^7+2^n=144+2^n\)
Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow144+2^{2k}=m^2\)
\(\Rightarrow144=m^2-\left(2^k\right)^2\)
\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)
Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)
đặt 4a-31=x2, a+71=y2
dùng p2 cộng đại số giải hpt
\(\Rightarrow\) x=157, y=79
\(\Rightarrow\) a=6170
Cộng 1 vào 2 vế ta có:
10x2+50y2+42xy+14x−6y+58≤010x2+50y2+42xy+14x−6y+58≤0
↔(x+7)2+(y−3)2+(3x+7y)2≤0↔(x+7)2+(y−3)2+(3x+7y)2≤0
↔x=−7,y=3↔x=−7,y=3
Vậy...
Bạn tự ghi nha
chúc hok tốt
\(A=x^4+x^3+1\) là số chính phương <=> \(k^2A,k\inℕ^∗\)cũng là số chính phương
Ở đây ta xét k=2\(\Rightarrow4A=4x^4+4x^3+4\)
Nếu \(x=1\Rightarrow4A=12\)không là số chinh phương
Xét \(2\le x\Rightarrow4\le x^2\Rightarrow4A\le4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
Ý tưởng ở đây là chứng minh 4A nằm giữa 2 sô chính phương liên tiếp, từ đó ta ép 4A vào rất ít trường hợp khả thi
Vậy nên ta chứng minh \(4A>\left(2x^2+x-1\right)^2\)
\(\Leftrightarrow4x^4+4x^3+4>4x^4+x^2+1+4x^3-4x^2-2x\)
\(\Leftrightarrow3x^2+2x+3>0\)Đúng với mọi số tự nhiên x
Vậy \(\left(2x^2+x-1\right)^2< 4A\le\left(2x^2+x\right)^2\)
Lúc này 4A là số chính phương khi và chỉ khi \(4A=\left(2x^2+x\right)^2\Leftrightarrow x=2\)