K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(p\left(1\right)=1^2+2.a.1+a^2\)

\(Q\left(-1\right)=\left(-1\right)^2+\left(2a+1\right).\left(-1\right)+a^2\)

                 \(=1-2a-1+a^2\)

Vì \(p\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow1+2a+a^2=1-2a-1+a^2\)

\(\Rightarrow2a+2a+a^2-a^2=1-1-1\)

\(\Rightarrow4a=-1\)

\(\Rightarrow a=\frac{-1}{4}\)

15 tháng 4 2019

Cách 2:

a) \(f\left(x\right)=3x^3-2x^2+4x-5\)

                \(=3x^3-3x^2+x^2-x+5x-5\)

                \(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)

                 \(=\left(x-1\right).\left(3x^2+x+5\right)\)

\(\Rightarrow f\left(x\right)⋮x-1\)