Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
a: \(M\left(x\right)=2x^2+3\)
\(N\left(x\right)=3x^3-2x^2+x\)
b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)
\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)
\(\cdot\) `\text {dnammv}`
`7,`
`a,`
`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)
`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`
`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`=-3x^5+9x^4+6x-1`
`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`
`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`
`= 3x^5-9x^4+3x-5`
`b,`
`H(x)= N(x)+ M(x)`
`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`= 9x-6`
`G(x)=M(x)-N(x)`
`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`= -6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất: `9`
Hệ số tự do: `-6`
`G(x)= -6x^5+18x^4+3x+4`
Hệ số cao nhất: `-6`
Hệ số tự do: `4`
`d,`
`H(1)=9*1-6=9-6=3`
`H(-1)=9*(-1)-6=-9-6=-15`
`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`
`H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x= 6 \div 9`
`-> x=`\(\dfrac{2}{3}\)
Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)
`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`
`= (2x^3 -x^3)+x^2+(-x+3x) +5`
`= x^3 +x^2 + 2x+5`
`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`
`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`
`= -x^3 -x^2+3x+10`
`b,M(x)=P(x)+Q(x)`
`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5+(-x^3) -x^2+3x+10`
`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`
`= 5x+15`
`N(x)=P(x)-Q(x)`
`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`
`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`
`=2x^2 -x-5`
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
\(\dfrac{M}{N}=\dfrac{x^4-x^3+6x^2-x+a}{x^2-x+5}\)
\(=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để M chiahết cho N thì a-5=0
=>a=5
Để M chia N dư 3 thì a-5=3
=>a=8