K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{M}{N}=\dfrac{x^4-x^3+6x^2-x+a}{x^2-x+5}\)

\(=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để M chiahết cho N thì a-5=0

=>a=5

Để M chia N dư 3 thì a-5=3

=>a=8

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 e. 2x2 - 6           ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

24 tháng 3 2022

a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)

                              = 2x- 2x5 - 4x+ 4x+ 2x4 + 2x2 + x2 + 10x + x -1 - 10

                              = 2x4 + 3x2 + 11x - 11

b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)

                                         = -2x- 2x5 + 2x4 + 4x+ 4x+ x2 - 2x2 + x - 10x -10 + 1

                                         = -2x5 + 2x4 + 8x3 - x2 - 9x -9

24 tháng 3 2022

tks nha 

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm

\(\cdot\) `\text {dnammv}`

`7,`

`a,`

`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)

`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`

`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`=-3x^5+9x^4+6x-1`

`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`

`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`

`= 3x^5-9x^4+3x-5`

`b,`

`H(x)= N(x)+ M(x)`

`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`= 9x-6`

`G(x)=M(x)-N(x)`

`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`= -6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất: `9`

Hệ số tự do: `-6`

`G(x)= -6x^5+18x^4+3x+4`

Hệ số cao nhất: `-6`

Hệ số tự do: `4`

`d,`

`H(1)=9*1-6=9-6=3`

`H(-1)=9*(-1)-6=-9-6=-15`

 

`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`

 

`H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x= 6 \div 9`

`-> x=`\(\dfrac{2}{3}\)

Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2

4 tháng 5 2023

\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)

4 tháng 5 2023

`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`

`= (2x^3 -x^3)+x^2+(-x+3x) +5`

`= x^3 +x^2 + 2x+5`

`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`

`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`

`= -x^3 -x^2+3x+10`

`b,M(x)=P(x)+Q(x)`

`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5+(-x^3)  -x^2+3x+10`

`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`

`= 5x+15`

`N(x)=P(x)-Q(x)`

`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`

`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`

`=2x^2 -x-5`

a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)

\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)

\(\Leftrightarrow M=x^2+11xy-y^2\)

Vậy: \(M=x^2+11xy-y^2\)

b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)

\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)

\(\Leftrightarrow N=-x^2+10xy-12y^2\)

Vậy: \(N=-x^2+10xy-12y^2\)