Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{a^2-4}{2x-5}=2+a\)
\(ĐKXĐ:x\ne\frac{5}{2}\)
\(\Rightarrow\left(2+a\right).\left(2x-5\right)=a^2-4\)
\(\Rightarrow2x-5=\frac{a^2-4}{a+2}=a-2\)
\(\Leftrightarrow x=\frac{a-3}{2}\)
vì x là số nguyên dương nhỏ hơn 2 nên x=1
\(\Leftrightarrow1=\frac{a-3}{2}\)
\(\Leftrightarrow a-3=2\)
\(\Leftrightarrow a=5\)
A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x)
= - x+6/x+2
a) \(A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(A=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-8x+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
\(a,A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
\(=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-8x+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
a) \(\frac{3x+6}{x^2-4}=\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3}{x-2}\)( ĐKXĐ : x ≠ ±2 )
\(\frac{2x+6}{x^3+3x^2-9x-27}=\frac{2\left(x+3\right)}{x^2\left(x+3\right)-9\left(x+3\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x^2-9\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)( ĐKXĐ : x ≠ ±3 )
MTC : ( x - 2 )( x - 3 )( x + 3 )
=> \(\hept{\begin{cases}\frac{3}{x-2}=\frac{3\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3\left(x^2-9\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{3x-27}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\\\frac{2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{4x-4}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\end{cases}}\)
b) \(\frac{x^2-4x+4}{2x^2-3x+1}=\frac{\left(x-2\right)^2}{2x^2-2x-x+1}=\frac{\left(x-2\right)^2}{2x\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne1\\x\ne\frac{1}{2}\end{cases}}\))
\(\frac{x+4}{2x-2}=\frac{x+4}{2\left(x-1\right)}\)( ĐKXĐ : x ≠ 1 )
MTC : \(2\left(x-1\right)\left(2x-1\right)\)
=> \(\hept{\begin{cases}\frac{\left(x-2\right)^2}{\left(x-1\right)\left(2x-1\right)}=\frac{2\left(x^2-4x+4\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2-8x+8}{2\left(x-1\right)\left(2x-1\right)}\\\frac{x+4}{2\left(x-1\right)}=\frac{\left(x+4\right)\left(2x-1\right)}{2\left(x-1\right)\left(2x-1\right)}=\frac{2x^2+7x-4}{2\left(x-1\right)\left(2x-1\right)}\end{cases}}\)
c) \(\frac{6a}{a-b}\)( ĐKXĐ : a ≠ b ) ; \(\frac{2b}{b-a}=\frac{-2b}{a-b}\)( ĐKXĐ : a ≠ b) ; \(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)( ĐKXĐ : a ≠ ±b )
MTC : \(\left(a-b\right)\left(a+b\right)\)
=> \(\frac{6a}{a-b}=\frac{6a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{6a^2+6ab}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{-2b}{a-b}=\frac{-2b\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}=\frac{-2ab-2b^2}{\left(a-b\right)\left(a+b\right)}\)
\(\frac{5}{a^2-b^2}=\frac{5}{\left(a-b\right)\left(a+b\right)}\)
d) \(\frac{x}{x^2+11x+30}=\frac{x}{x^2+5x+6x+30}=\frac{x}{x\left(x+5\right)+6\left(x+5\right)}=\frac{x}{\left(x+5\right)\left(x+6\right)}\)( ĐKXĐ : x ≠ -5 ; x ≠ -6 )
\(\frac{5}{x^2+9x+20}=\frac{5}{x^2+4x+5x+20}=\frac{5}{x\left(x+4\right)+5\left(x+4\right)}=\frac{5}{\left(x+4\right)\left(x+5\right)}\)( ĐKXĐ : x ≠ -4 ; x ≠ -5 )
MTC : \(\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
=> \(\hept{\begin{cases}\frac{x}{\left(x+5\right)\left(x+6\right)}=\frac{x\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{x^2+4x}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\\\frac{5}{\left(x+4\right)\left(x+5\right)}=\frac{5\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}=\frac{5x+30}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}\end{cases}}\)
Sai chỗ nào bạn bỏ qua nhé