Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
a: \(A=-0.5x^2yz\cdot\left(-3\right)xy^3z=1.5x^3y^4z^2\)
b: Hệ số là 1,5
Bậc là 9
1a) Để \(\frac{6x+5}{2x+1}\)là số nguyên thì 6x+5 chia hết cho 2x+1
=> (6x+3)+2 chia hết cho 2x+1
=> 2 chia hết cho 2x+1 ( vì 6x+3 chia hết cho 2x+1)
=> 2x+1 thuộc ước của 2={ 1;-1;2;-2}
Với 2x+1=1=> x=0
Với 2x+1=-1=> x=-1
Với 2x+1=...........
Với 2x+1=.......
Vậy x=.............
b) Để \(\frac{3x+9}{x-4}\)là số nguyên thì 3x+9 chia hết cho x-4
=> (3x-12)+21 chia hết x-4
=> 21 chia hết cho x-4 ( vì 3x-12 chia hết cho x-4)
=> x-4 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Với x-4=1=> x=5
Với x-4=-1=> x=3
....
....
....
....
...
Vậy x=......
2) \(\left(x+\frac{1}{2}+x+\frac{1}{3}\right)+\left(2x+\frac{1}{3}+2x+\frac{1}{4}\right)=0\)
=> \(6x+\frac{17}{12}=0\)
=> \(x=\frac{0-\frac{17}{12}}{6}=-\frac{89}{12}\)
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
Câu 11:
=>4,6x=6,21
=>x=1,35
12: \(A=-\left(1.4-x\right)^2-1.4< =-1.4\)
=>x=-1,4
Câu 9:
\(\Leftrightarrow\dfrac{10a+b}{100c+90+d}=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{92}-\dfrac{1}{97}=\dfrac{1}{2}-\dfrac{1}{97}=\dfrac{95}{194}\)
=>a=9; b=5; c=1; d=4
=>a+b+c+d=9+5+1+4=19
a: \(\dfrac{x}{6}=\dfrac{8}{3}\)
=>\(x=6\cdot\dfrac{8}{3}=\dfrac{6}{3}\cdot8=8\cdot2=16\)
b: \(\dfrac{5}{x}=\dfrac{4}{9}\)
=>\(x=\dfrac{5\cdot9}{4}=\dfrac{45}{4}\)
c: \(\dfrac{x+3}{-4}=\dfrac{5}{20}\)
=>\(x+3=\dfrac{-4\cdot5}{20}=-1\)
=>x=-1-3=-4
d: \(\dfrac{7}{3+4x}=\dfrac{-2}{9}\)
=>\(4x+3=\dfrac{9\cdot7}{-2}=-\dfrac{63}{2}\)
=>\(4x=-\dfrac{63}{2}-3=-\dfrac{69}{2}\)
=>\(x=-\dfrac{69}{8}\)
f: ĐKXĐ: x<>1
\(\dfrac{3}{x-1}=\dfrac{x-1}{27}\)
=>\(\left(x-1\right)^2=3\cdot27=81\)
=>\(\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=10\left(nhận\right)\\x=-8\left(nhận\right)\end{matrix}\right.\)
\(A=2x^3+6x^2-3x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}^3+6\cdot\dfrac{1}{3}^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
=13/54
Đặt x2 = a (a >= 0) , y2 = b (b >= 0)
Ta có : (a + b)/10 = (a - 2b)/7 và a2b2 = 81
(a + b)/10 = (a - 2b)/7 = [(a + b) - (a - 2b)]/10 - 7 = 3b/3 = b (1)
(a + b)/10 = (a - 2b)/7 = (2a + 2b)/20 = [(2a + 2b) + (a - 2b)]/(20 + 7) = 3a/27 = a/9 (2)
Từ (1) và (2) => a/9 = b => a = 9b
Do a2b2 = 81 nên (9b)2 . b2 = 81 => 81b4 = 81 => b4 = 1 => b = 1 (vì b >= 0)
Suy ra : a = 9.1 = 9
Ta có : x2 = 9 => x = 3 hoặc x = -3
y2 = 1 => y = 1 hoặc y = -1
Vậy : ...
P/S : Do bấm công thức Toán nó bị lỗi nên thông cảm
Áp dụng dãy tỉ số bằng nhau:
b.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)
d.
\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
Theo đầu bài ta chia như sau:
Theo đầu bài suy ra: x^2 - x + a chia hết cho x^2 - x + 5 nên a = 5