Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
+ Nếu a+b+c=0 thì a+b=-c; b+c=-a; c+a=-b
P = -c.(-a).(-b)/16120abc = -1/16120
+ Nếu a+b+c khác 0
Áp dung t/c của dãy tỉ số = nhau ta có:
5a+5b-c/c = 5b+5c-a/a = 5c+5a-b/b
= (5a+5b-c)+(5b+5c-a)+(5c+5a-b)/c+a+b
= 9(a+b+c)/a+b+c = 9
=> 5a+5b-c=9c; 5b+5c-a=9a; 5c+5a-b=9b
=> 5a+5b=10c; 5b+5c=10a; 5c+5a=10b
=> a+b=2c; b+c=2a; c+a=2b
P = 2c.2a.2b/16120abc = 1/2015
Ta có: \(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Leftrightarrow4\cdot\left(3a^2-b^2\right)=3\left(a^2+b^2\right)\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow12a^2-3a^2=3b^2+4b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
hay \(\dfrac{a}{b}=\pm\dfrac{\sqrt{7}}{3}\)
1. 2a = 3b ; 5b =7c
Từ giả thiết 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
5b = 7c => \(\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) và 3a + 5c -7b = 30
Ta đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
Suy ra a= 21k, b= 14k, c= 10k
Theo giả thiết: 3a + 5c - 7b = 30 =>3.21k + 5.10k - 7.14k = 30
=>63k + 50k - 98k= 30 => 15k = 30=> k= 2
Vậy a = 21.2=42
b = 14.2= 28
c = 10.2=20.
2. Bạn giải như bài trên nha!
Ta có:\(2a=3b=>\frac{a}{3}=\frac{b}{2}\)
\(5b=2c=>\frac{b}{2}=\frac{c}{5}\)
=>\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}=\frac{3a}{9}=\frac{7b}{14}=\frac{5c}{25}=\frac{3a+5c-7b}{9+25-14}=\frac{30}{20}=\frac{3}{2}\)
=>\(a=\frac{3}{2}.3=\frac{9}{2},b=\frac{3}{2}.2=3,c=\frac{3}{2}.5=\frac{15}{2}\)
Sửa đề lại đi e
Sửa đề:
a3 +3a2 +5 = 5b
a+c = 5c
giải
Do a \(\in Z^+\) => 5b = 3a2 + 5 > a +3 = 5c
=> 5b > 5c => b > c
=> 5b chia hết cho 5c
=> ( a3 +3a2+5) chia hết cho a+3
=> a2 ( a+3) +5 chia hết cho a +3
Mà a2 (a+3) chia hết cho a+3
=> 5 chia hết cho a+3
=> a+3 thuộc Ư(5)
\(\Rightarrow a+3\in\left\{\pm1;\pm5\right\}\)(1)
Do \(a\in Z^+\Rightarrow a+3\ge4\) (2)
Từ (1) và (2)
=> a +3 = 5 => a = 2
=> 23 +3.22 +5 = 52
=> 5b =52
=> b = 2
và: 2 + 3 = 5
=> 5c = 5
=> c = 1
Vậy a=2; b=2 và c=1