Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK \(\hept{\begin{cases}a\ge0\\a\ne4\\a\ne9\end{cases}}\)
P=\(\frac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)
b. P = \(\frac{\sqrt{a}+1}{\sqrt{a}-3}=1+\frac{4}{\sqrt{a}-3}\)
P nguyên \(\sqrt{a}-3\inƯ\left(4\right)\Rightarrow\sqrt{a}-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{1;2;4;5;7\right\}\Rightarrow a\in\left\{1;4;16;25;49\right\}\)
c. \(P< 1\Rightarrow P-1< 0\Rightarrow\frac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\Rightarrow\frac{4}{\sqrt{a}-3}< 0\)
\(\Rightarrow0\le a< 9\)và \(a\ne4\)
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
\(\Leftrightarrow\frac{2a-2b\sqrt{5}-3a-3b\sqrt{5}}{a^2-5b^2}=-9-20\sqrt{5}\)
\(\Leftrightarrow\frac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\)
\(\Leftrightarrow\sqrt{5}\left(100b^2+5b-20a^2\right)=9a^2-a-45b^2\)
Ta nhận thây VT là sô vô tỷ còn VP là sô hữu tỷ.
\(\Rightarrow\hept{\begin{cases}100b^2+5b-20a^2=0\\9a^2-a-45b^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}a=9\\b=4\end{cases}\left(nhan\right)}\)