Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a chia 7 dư 5 => a=7m+5 \(\left(m\in N\right)\)
b chia 7 dư 2 => b=7n+2 \(\left(n\in N\right)\)
a) \(a+b=7n+2+7m+5=7n+7m+7=7.\left(m+n+1\right)\)
ta có: \(7⋮7\Rightarrow7.\left(m+n+1\right)⋮7\left(v\text{ì}m,n\in N\right)\)
\(\Rightarrow\left(a+b\right)⋮7\)
=> (a+b):7 dư 0
Vậy (a+b):7 dư 0
b) \(a.b=\left(7m+5\right).\left(7n+2\right)=49mn+14m+35n+10=7.\left(7mn+2m+5n+1\right)+3\)
Có \(\hept{\begin{cases}7.\left(7mn+2m+5n+1\right)⋮7\left(v\text{ì}7⋮7;m,n\in N\right)\\3:7=0d\text{ }\text{ư}3\end{cases}}\)
\(\Rightarrow7.\left(7mn+2m+5n+1\right)+3:7d\text{ư}3\)
\(\Rightarrow a.b:7d\text{ư}3\)
Vậy a.b:7 dư 3
Tham khảo nhé~
x chia 5 du 3 => x=5k+3
x chia 7 du 4=> x=7n+4
=> 5k+3=7n+4
=>5k=7n+1
=> k=(7n+1)/5=\(\frac{5n+2n+1}{5}=n+\left(\frac{2n+1}{5}\right)\)
\(\frac{2n+1}{5}phainguyen=>2n+1=5.t=>n=\frac{5t-1}{2}=\frac{4t+t-1}{2}=2t+\frac{\left(t-1\right)}{2}\)
=>t=2p+1
\(n=2\left(2p+1\right)+p=5p+2\)
x=7n+4=7(5p+2)+4=35p+18
x nhỏ nhất=>p=0=> x=18
DS: X=18
Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a { 8;13;18;23;...}
Vậy a là 8
Tham khảo bn nhé !!!
theo đề ta có:a:9dư 5 ⇒2a-1 chia hết cho 9
a:7 dư 4 ⇒2a-1 chia hết cho7
a:5 dư 3 ⇒2a-1 chia hết cho 5
vì 2a-1 chia hết cho 9,7,4 và a nhỏ nhất ⇒2a-1 thuộc BCNN(9,7,4)
9=32, 5=5, 7=7
BCNN(9,7,4)=32.7.5=315
Ta có: 2a-1=315
2a= 315+1
2a=316
a=316:2
a=158
Vậy số cần tìm là :158
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
gọi số đó là a
ta có: (a-3) chia hết cho 5
(a-4) chia hết cho 7
(a-5) chia hết cho 9
=> 2a-6 chia hết cho 5
2a-8 chia hết cho 7
2a-10 chia hết cho 9
=> 2a-1 chia hết cho 5;7;9
Mà a là số tự nhiên nhỏ nhất nên 2a-1=BCNN(5;7;9)=315
=> a=158
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
Số b = 7
Vì 123b=1237:7 dư 5
Còn số a thì mình chưa thấy trên đề nên không giải được