Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
a/ Do \(y=ax+b\) qua A;B nên ta có:
\(\left\{{}\begin{matrix}2a+b=1\\-a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\) \(\Rightarrow y=x-1\)
b/ Thay tọa độ C vào đường thẳng \(y=x-1\) \(\Rightarrow-1=0-1\) (thỏa mãn)
Vậy C thuộc đường thẳng AB hay A;B;C thẳng hàng
c/ Để (d) qua B;C
\(\Rightarrow\left\{{}\begin{matrix}-\left(2a-b\right)+3a-1=-2\\0\left(2a-b\right)+3a-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\3a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)
Bài 1:
Vì (d) đi qua điểm A(1;3) nên thay x=1 và y=3 vào (d) ta có:
3=a.1+b
⇔a+b=3 (1)
Vì (d) đi qua điểm B(-3;-1) nên thay x=-3 và y=-1 vào (d) ta có:
-1 = a.(-3)+b
⇔-3a+b=-1
⇔ 3a - b=1 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4a=4\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\3.1-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a=1, b=2 là giá trị cần tìm
Bài 2
1, Vì (d) đi qua A(1;2003) nên thay x =1, y=2003 vào (d) ta có:
2003 = 1 +m
⇔ m = 2002
Vậy m = 2002 là giá trị cần tìm
2, Ta có:
x - y +3 =0
⇔ y= x+3
Để (d) // y = x+3 thì:
\(\left\{{}\begin{matrix}1=1\left(\text{luôn đúng}\right)\\m\ne3\end{matrix}\right.\)
Vậy m ≠ 3 thì (d) // x-y+3=0
* Chúc bạn học tốt*
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Thay tọa độ điểm A vào phương trình đường thẳng ta được 2a + b = 1
Thay tọa độ điểm B vào phương trình đường thẳng ta được −2a + b = 3
Từ đó ta có hệ phương trình
2 a + b = 1 − 2 a + b = 3 ⇔ b = 1 − 2 a − 2 a + 1 − 2 a = 3 ⇔ a = − 1 2 b = 1 − 2. − 1 2 ⇔ a = − 1 2 b = 2
Vậy a = − 1 2 ; b = 2
Đáp án: A