Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tất cả các pt đường thẳng có dạng \(y=ax+b\)
a/ Do đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và đi qua B(2;-1) nên ta có:
\(\left\{{}\begin{matrix}2=0.a+b\\-1=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+2\)
b/ Do .... nên ta có:
\(\left\{{}\begin{matrix}3=0.a+b\\a=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{3}x+3\)
c/ Pt hoành độ giao điểm của 2 đường thẳng:
\(5x-3=-2x+4\Rightarrow7x=7\Rightarrow x=1\Rightarrow y=2\Rightarrow\left(1;2\right)\)
Do... nên: \(\left\{{}\begin{matrix}2=1.a+b\\a=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{2}\\b=\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{2}x+\frac{7}{2}\)
d/ Do... nên:
\(\left\{{}\begin{matrix}-5=-2a+b\\4=1.a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Rightarrow y=3x+1\)
a/ Hàm số đồng biến khi \(2m-5>0\Leftrightarrow m>\frac{5}{2}\)
Hàm số nghịch biến khi \(2m-5< 0\Leftrightarrow m< \frac{5}{2}\)
b/ Thay tọa độ điểm vào pt d ta được:
\(-1=\left(2m-5\right).2+3\Leftrightarrow m=\frac{3}{2}\)
c/ \(2m-5=3\Rightarrow m=4\)
d/ \(3x+2y=1\Leftrightarrow2y=-3x+1\Leftrightarrow y=-\frac{3}{2}x+\frac{1}{2}\)
\(\Rightarrow2m-5=-\frac{3}{2}\Rightarrow m=\frac{7}{4}\)
e/ \(2x-4y+3=0\Rightarrow4y=2x+3\Rightarrow y=\frac{1}{2}x+\frac{3}{4}\)
Phương trình hoành độ giao điểm:
\(\frac{1}{2}x+\frac{3}{4}=\left(2m-5\right)x+3\Rightarrow\left(2m-\frac{11}{2}\right)x=-\frac{9}{4}\)
Để 2 đường thẳng cắt nhau \(\Leftrightarrow2m-\frac{11}{2}\ne0\Rightarrow m\ne\frac{11}{4}\)
f/ Thay \(x=-2\) vào \(2x+y=-3\) ta được:
\(-4+y=-3\Rightarrow y=1\)
Thay tọa độ \(\left(-2;1\right)\) vào pt d ta được:
\(1=-2\left(2m-5\right)+3\Rightarrow m=3\)
g/ Ta thấy với \(x=0\Rightarrow y=3\)
\(\Rightarrow\) d luôn đi qua điểm \(\left(0;3\right)\) trên trục tung với mọi m
Đk: \(k\ge0\)
a)
A(0,2\(\sqrt{3}\))
x=0
\(\Rightarrow y=\sqrt{k}+\sqrt{3}\)
\(\Rightarrow\sqrt{k}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
\(\Rightarrow k=3\) nhận
b)
\(B\left(1;0\right)\)
\(\Leftrightarrow\dfrac{\sqrt{k}+1}{\sqrt{3}-1}.1+\sqrt{k}+\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{k}+1+\sqrt{k}.\left(\sqrt{3}-1\right)+\sqrt{3}\left(\sqrt{3}-1\right)=0\)
\(\Leftrightarrow\sqrt{3}\sqrt{k}+4-\sqrt{3}=0\)
\(4>\sqrt{3}\Rightarrow Vo..N_0\)
(d) không đi qua điểm B(1;0)
c) Sửa đề \(k\ge0\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}.x+x+\sqrt{3}\sqrt{k}-\sqrt{k}+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}\left(x+\sqrt{3}-1\right)+x+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
Với \(x=1-\sqrt{3}\) => y=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}-1\) không phụ thuộc k
Điểm cố định
D\(\left(\left(1-\sqrt{3}\right);\left(\sqrt{3}+1\right)\right)\)
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)