Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Đường thẳng \(y=ax+b\) đi qua 2 điểm $A,B$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 1=2a+b\\ -2=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=-1\end{matrix}\right.\)
Vậy đường thẳng cần tìm có pt là $y=x-1$
b)
Ta thấy \(-1=0-1\Leftrightarrow y_C=x_C-1\)
Do đó điểm $C$ thuộc đường thẳng $y=x-1$ hay điểm $C$ nằm trên đường thẳng qua 2 điểm $AB$
$\Rightarrow A,B,C$ thẳng hàng (đpcm)
Bài 1:
Vì (d) đi qua điểm A(1;3) nên thay x=1 và y=3 vào (d) ta có:
3=a.1+b
⇔a+b=3 (1)
Vì (d) đi qua điểm B(-3;-1) nên thay x=-3 và y=-1 vào (d) ta có:
-1 = a.(-3)+b
⇔-3a+b=-1
⇔ 3a - b=1 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4a=4\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\3.1-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a=1, b=2 là giá trị cần tìm
Bài 2
1, Vì (d) đi qua A(1;2003) nên thay x =1, y=2003 vào (d) ta có:
2003 = 1 +m
⇔ m = 2002
Vậy m = 2002 là giá trị cần tìm
2, Ta có:
x - y +3 =0
⇔ y= x+3
Để (d) // y = x+3 thì:
\(\left\{{}\begin{matrix}1=1\left(\text{luôn đúng}\right)\\m\ne3\end{matrix}\right.\)
Vậy m ≠ 3 thì (d) // x-y+3=0
* Chúc bạn học tốt*
a/ Do \(y=ax+b\) qua A;B nên ta có:
\(\left\{{}\begin{matrix}2a+b=1\\-a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\) \(\Rightarrow y=x-1\)
b/ Thay tọa độ C vào đường thẳng \(y=x-1\) \(\Rightarrow-1=0-1\) (thỏa mãn)
Vậy C thuộc đường thẳng AB hay A;B;C thẳng hàng
c/ Để (d) qua B;C
\(\Rightarrow\left\{{}\begin{matrix}-\left(2a-b\right)+3a-1=-2\\0\left(2a-b\right)+3a-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\3a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)