Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ hai phương trình đầu suy ra a+d = -1, hay d = -1 -a . Thế vào ba phương trình cuối ta được hệ phương trình ba ẩn:
4a+2b-c =0; 3a - 2b - 3c = 4; 7a + a - 6c = 5.
Giải hệ này (chẳng hạn sử dụng máy tính cầm tay CASIO fx - 570 ) ta được
\(a=\frac{4}{37};b=-\frac{23}{37};c=-\frac{30}{37}\) suy ra \(a=-1-\frac{4}{37}=-\frac{41}{37}\)
Từ đó a + b + c + d = -90/37
Nhân cả 2 vế với 4, ta có:
8a2+4b2+4c2+4d2+4e2=4a(b+c+d+e)
<=> 8a2+4b2+4c2+4d2+4e2 - 4a(b+c+d+e) = 0
<=> 8a2+4b2+4c2+4d2+4e2 - 4ab-4ac-4ad-4ae=0
<=>(a2-4ab+4b2) + (a2-4ac+4c2) + (a2-4ad+ 4d2) + (a2-4ae+ 4e2) +4a2=0
<=> (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 = 0
Vì (a-2b)2, (a-2c)2, (a-2d)2, (a-2e)2 , (2a)2 luôn lớn hơn hoặc bằng không
=> (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 >= 0
mà (a-2b)2 + (a-2c)2 + (a-2d)2 + (a-2e)2 + (2a)2 = 0
nên
(2a)2 = 0 <=> a=0
(a-2b)2 = 0 <=> (0-2b)2=0 <=> 2b=0 <=> b=0
Chứng minh tương tự ta được a=b=c=d=e=0
Vậy a=b=c=d=e=0
Áp dụng BĐT \(4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4ab+4ac+4ad+4ae\)
\(\Rightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\)\(\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)
\(\Rightarrow\left(a-2b\right)^2+\left(a-2c^2\right)+\left(a-2d^2\right)+\left(a-2e\right)^2\ge0\)( Luôn đúng với mọi trường hợp )
Dấu "=" xảy ra \(\Leftrightarrow a=2b=2c=2d=2e\)
P/s không hiểu thì: \(2xy\le x^2+y^2\forall x=2a;y=b+c+d+e\)
Có thể dùng BĐT Bunhiaxicop cho 4 số
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Do \(a+b+c=1\)
nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Do \(a+b+c=1\)
nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Do \(a+b+c=1\)
nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Do \(a+b+c=1\)
nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
a= 7
b= -1
c= -2
d= -3
b=(a+b+c+d)-(a+c+d)=1-2=-1
c=(a+b+c+d)-(a+b+d)=1-3=-2
d=(a+b+c+d)-(a+b+c)=1-4=-3
a+b+c+d=1
=>a+(-1)+(-2)+(-3)=1
=>a+(-6)=1
=>a=7