K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2014

a= 7

b= -1

c= -2

d= -3

7 tháng 3 2017

b=(a+b+c+d)-(a+c+d)=1-2=-1

c=(a+b+c+d)-(a+b+d)=1-3=-2

d=(a+b+c+d)-(a+b+c)=1-4=-3

a+b+c+d=1

=>a+(-1)+(-2)+(-3)=1

=>a+(-6)=1

=>a=7

DM
31 tháng 1 2018

Từ hai phương trình đầu suy ra a+d = -1, hay d = -1 -a . Thế vào ba phương trình cuối ta được hệ phương trình ba ẩn:

                4a+2b-c =0; 3a - 2b - 3c = 4; 7a + a - 6c = 5.

Giải hệ này (chẳng hạn sử dụng máy tính cầm tay CASIO fx - 570 ) ta được 

                \(a=\frac{4}{37};b=-\frac{23}{37};c=-\frac{30}{37}\) suy ra  \(a=-1-\frac{4}{37}=-\frac{41}{37}\)

Từ đó    a + b + c + d = -90/37

5 tháng 3 2018

đăng câu hỏi linh tinh

5 tháng 3 2018

mình có nick sv1 nè lấy o

tk:mnmn@vk.ck

mt:aaaa hoặc cccc

8 tháng 7 2018

Nhân cả 2 vế với 4, ta có:

8a2+4b2+4c2+4d2+4e2=4a(b+c+d+e)

<=> 8a2+4b2+4c2+4d2+4e- 4a(b+c+d+e) = 0

<=> 8a2+4b2+4c2+4d2+4e- 4ab-4ac-4ad-4ae=0

<=>(a2-4ab+4b2) + (a2-4ac+4c2) + (a2-4ad4d2) + (a2-4ae+ 4e2) +4a2=0

<=> (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 = 0

Vì (a-2b)2, (a-2c)2, (a-2d)2, (a-2e), (2a)2 luôn lớn hơn hoặc bằng không

=> (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 >= 0

mà (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 = 0

nên 

(2a)= 0 <=> a=0

 (a-2b)= 0 <=> (0-2b)2=0 <=> 2b=0 <=> b=0

Chứng minh tương tự ta được a=b=c=d=e=0

Vậy a=b=c=d=e=0

8 tháng 7 2018

Áp dụng BĐT \(4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4ab+4ac+4ad+4ae\)

\(\Rightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\)\(\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Rightarrow\left(a-2b\right)^2+\left(a-2c^2\right)+\left(a-2d^2\right)+\left(a-2e\right)^2\ge0\)( Luôn đúng với mọi trường hợp )

Dấu "=" xảy ra \(\Leftrightarrow a=2b=2c=2d=2e\)

P/s không hiểu thì: \(2xy\le x^2+y^2\forall x=2a;y=b+c+d+e\)

Có thể dùng BĐT  Bunhiaxicop cho 4 số

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

25 tháng 1 2018

sv 5 thui

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)