K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

\(\frac{1+2a}{15}=\frac{7-3a}{20}\Leftrightarrow20\left(1+2a\right)=15\left(7-3a\right)\Rightarrow a=1.\)

\(\frac{1+2a}{15}=\frac{3b}{23+7a}\) Thay a = 1 vào

\(\frac{1}{5}=\frac{b}{10}\Rightarrow b=2\)

28 tháng 9 2016

mk không bít

mk mới lớp 7 thui

sorry nha

cảm ơn nhé

k mk nha

 k mk mk k lại

13 tháng 3 2016

\(\frac{1+2}{15}=\frac{3b}{23+7a}=\frac{7-3a}{20}\)

=\(\left(1+2a\right).\left(23+7a\right)=3b+15=\frac{7-3a}{20}\)

=\(\left[1+a\left(2+1\right)\right].\left[23+a\left(7+1\right)\right]=3b.15=\frac{7-3a}{20}\)

=[1+a3].[23+a8]=3b.15=7-3a/20

a[23+1(3+8+2)]=3b.15=7-3a/20

a.36=3b.15=7-3a/20

=>\(\frac{15}{a}=\frac{36}{3b}=\frac{7-3a}{20}=>\frac{15}{a}=12b=\frac{7-3a}{20}\)

con lai tu tinh nha

22 tháng 2 2019

\(P=\frac{3a+7+2a-b-7}{3a+7}-\frac{2b-7+b-2a+7}{2b-7}\)

mà 2a-b=7 hay b-2a=-7 nên ta có

\(P=1+\frac{7-7}{3a+7}-1-\frac{-7+7}{2b-7}=1+0-1-0=0\)

18 tháng 11 2017

\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)

\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)

\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)

\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)

Dấu = xảy ra khi ....

5 tháng 8 2018

Ta có: \(a-b=7\)

\(\Rightarrow b-a=-7\)

\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)

\(B=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b+\left(b-a\right)}{2b-7}\)

\(B=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\)

\(B=1+1\)

\(B=2\)

Vậy \(B=2\)

Tham khảo nhé~

5 tháng 8 2018

    \(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)

       \(=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b-\left(a-b\right)}{2b-7}\)

       \(=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\) (vì a - b = 7)

       \(=1+1=2\)

25 tháng 3 2020

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

26 tháng 3 2020

Chéc khó nhỉ

4 tháng 11 2017

Áp dụng bất đẳng thức Svác xơ ngược ta có 

\(\frac{1}{2a+3b+3c}=\frac{1}{a+b+a+c+2\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

tương tự mấy cái kia rồi cộng vào 

4 tháng 11 2017

Thu Mai ê, phải là\(\frac{1}{9}\) chứ, 3 số đấy

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)