Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2009}=5^{2000}\cdot5^9\)
Ta có: \(5^{2000}\equiv1\) (\(mod\) \(10000\))
\(5^9\equiv3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2000}\cdot5^9\equiv1\cdot3125\) (\(mod\) \(10000\))
\(\Rightarrow5^{2009}\equiv3125\) (\(mod\) \(10000\))
Vậy \(4\) chữ số tận cùng của \(5^{2009}\) là \(3125\)
Vào địa chỉ http://h.vn/vip/tuan_2468 bạn ấy đăng bài này đấy không được thì vào http://h.vn/?l=user.display.profile là sẽ có cho mình li ke nhé
Vì chữ số tận cùng của \(a^2\)là 4 nên chữ số tận cùng của \(a\)là 2 hoặc 8.
Nếu chữ số tận cùng của \(a\)là 2 thì 2 số tận cùng của a có dạng \(\overline{x2}\)
\(\overline{x2}=10x+2\)
\(\Rightarrow\left(\overline{x2}\right)^2=\left(10x+2\right)^2=100x^2+40x+4\equiv40x+4\left(mod100\right)\equiv64\left(mod100\right)\)
Ta có:
\(40.1+4\le40x+4\le40.9+4\)
\(\Leftrightarrow44\le40x+4\le364\)
\(\Rightarrow\left(40x+4\right)=\left(64;164;264;364\right)\)
\(\Rightarrow x=\left(4;9\right)\)
Hai số tận cùng của a là: 42; 92.
Tương tự cho trường hợp còn lại.