Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
45 đồng dư 24(mod100)
=>(45)20 đồng dư 2420(mod100)
245 đồng dư 24(mod100)
=>(245)4 đồng dư 244 (mod100) đồng dư 76(mod100)
=>2420 đồng dư 76(mod100)
=>4100 đồng dư 76(mod100)
có 46 đồng dư 96(mod100)
=>4100.46 đồng dư 76.96(mod100)
=>........................96(mod100)
=>4106 đồng dư 96(mod100)
52012=52010.52=(53)670.25 =25670.25
=(255)134.25 đồng dư 25134.25(mod100)
đồng dư (252)67.25(mod100)
đồng dư 2567.25(mod100)
đồng dư 2563.254.25(mod100)
đồng dư 2563.255 (mod100)
đồng dư (257)9.255 (mod100)
đồng dư 259.255 (mod100)
đồng dư 257.252.255(mod100)
đồng dư 25(mod100)
=>52012 đồng dư 25(mod100)
Vậy 4106 + 52012 đồng dư 96+25(mod100)
đồng dư 21 (mod100)
Vậy 2 chữ số tận cùng của A là 21
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2