Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ là 3 nên xy=3=> x=3/y
y tỉ lệ thuân với z theo hệ số tỉ lệ là 5 nên x/z=5=>(3/y)/z= 5
=>3/y=5z=> y= 3/5z => y/z=3/5
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 3/5
Vì `z` tỉ lệ thuận với `y` theo hệ số tỉ lệ `3 -> z= 3y (1)`
Vì `y` tỉ lệ thuận với `x` theo hệ số tỉ lệ `5 -> y=5x(2)`
Thay `(2)` vào `(1)` ta có:
`z = 3*5*x`
`z= (3*5)*x`
`-> z` tỉ lệ thuận với `x` theo hệ số tỉ lệ `3*5`.
x tỉ lệ thuận với y theo hệ số tỉ lệ k=0,5 nên x=0,5y
z tỉ lệ thuận với y theo hệ số tỉ lệ là k=8/3 nên z=8/3y
=>\(\dfrac{x}{z}=\dfrac{1}{2}:\dfrac{8}{3}=\dfrac{1}{2}\cdot\dfrac{3}{8}=\dfrac{3}{16}\)
=>x=3/16z
=>z=16/3x
=>z và x tỉ lệ thuận với hệ số tỉ lệ là k=16/3
a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)
\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10
Theo đề bài ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
\(=>\hept{\begin{cases}x=5\cdot3=15\\y=5\cdot4=20\\z=5\cdot5=25\end{cases}}\)
Vậy x = 15; y = 20; z = 25.