Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2y^3-5x^2+3x^3y^2\)
bậc 5, hệ số 3
bạn xem lại đề B nhé
a. đặt x/4=y/7=k => x=4k; y=7k
xy=112
=> 4k.7k=112
=> 28k2=112
=> k2=112:28
=> k2=4=22=(-2)2
=> k=2 hoặc k=-2
TH1: k=2
=> x=4k=4.2=8
=> y=7k=7.2=14
TH2: k=-2
=> x=4k=4.(-2)=-8
=> y=7k=7.(-2)=-14
b. x/y=2/5 => x/2=y/5=k => x=2k; y=5k
xy=40
=> 2k.5k=40
=> 10k2=40
=> k2=40:10
=> k2=4
=> k=2 hoặc k=-2
Th1: k=2
=> x=2k=2.2=4
=> y=5k=5.2=10
TH2: k=-2
=> x=2k=2.(-2)=-4
=> y=5k=5.(-2)=-10
a) Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Ta có xy = 112
\(\Rightarrow\) 4k.7k = 112
\(\Rightarrow\) 28k2 = 112
\(\Rightarrow\) k2 = 4
\(\Rightarrow\) k = + 2
\(\Rightarrow\) x = 4.(+ 2) = + 8; y = 7.(+ 2) = + 14
b) \(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Làm tương tự như câu a
Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0
Suy ra x;y;z khác 0
Đặt \(2=a;4=b;6=c\) khi đó ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)
Mà \(x;y;z\ne0\) suy ra:
\(ayz+bxz=bxz+xcy=cxy+ayz\)
\(\Rightarrow az=cx;bx=ay\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{k}{2}=k^2\)
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)
Thay số vào,ta được:
\(x=1;y=2;z=3\)
\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))
sorry sai đề :v
Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)
Ta có :
\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)
\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)
\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)
\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)
\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\) \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)
\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)
\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)
Làm thử thôi sai thì thôi nha !
Đặt x/2=y/5=k
=>x=2k; y=5k
xy-15x+6y=40
\(\Leftrightarrow10k^2-15\cdot2k+6\cdot5k=40\)
\(\Leftrightarrow10k^2=40\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=4;y=10
TRường hợp 2: k=-2
=>x=-4; y=-10
Đặt `x/2 = y/5 = k`
`=>` `{(x = 2k),(y = 5k):}`
Ta có `: xy - 15x + 6y = 40`
`=> 2k . 5k - 15 . ( 2k ) + 6 . ( 5k ) = 40`
`=> 10k^2 - 30k + 30k = 40`
`=> k^2 = 40 : 10`
`=> k^2 = 4`
`=>` \(\left[ \begin{array}{l}k^2 = 2^2\\k^2 = ( - 2 )^2\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}k = 2\\k = - 2\end{array} \right.\)
Xét `k = 2 => {(x = 2 . 2 = 4),(y = 5 . 2 = 10):}`
Xét `k = - 2 => {(x = - 2 . 2 = - 4),(y = - 2 . 5= - 10):}`
Vậy `, ( x ; y ) in { ( 4 ; 10 ) ; ( - 4 ; - 10 ) } .`