Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 3 số cần tìm là x<y<z
=> y=x+1; z=x+2
Theo đề bài
xy+yz+xz=242
=> x(x+1)+(x+1)(x+2)+x(x+2)=242
<=> x2+x+x2+3x+2+x2+2x=242
<=>3x2+6x-240=0
Giải PT bậc 2 tìm được x từ đó suy ra y và z
Ta có : \(3y^2+1=4x^2\)
\(\Leftrightarrow3y^2=4x^2-1\)
\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)
Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)
TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )
TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)
Khi đo s: \(2x-1=\left(2k+1\right)^2\)
\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )
Gọi 2 số tự nhiên liên tiếp đó là n và n+1 (với \(n\ge0\))
Theo đề bài ta có:
\(n^2+\left(n+1\right)^2=221\)
\(\Leftrightarrow n^2+n-110=0\Rightarrow\left[{}\begin{matrix}n=10\\n=-11\left(loại\right)\end{matrix}\right.\)
Vậy 2 số đó là 10 và 11