K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

5 tháng 10 2021

12 số 0 nha bn

5 tháng 10 2021

Bạn giải chi tiết và giả thích giúp mik nha

9 tháng 2 2016

dài lắm đợi tí

9 tháng 2 2016

Gọi 4 số tự nhiên là a, b, c, d (a, b, c, d∈N∗)

Không mất tính tổng quát, giả sử a≥b≥c≥d≥1

Ta có: 

abcd=a+b+c+d                       (1)

⇒abcd≤4a

⇒bcd≤4 (a>0

⇒d3≤4

⇒d=1

 

Với d=1, ta có:

(1)⇔abc=a+b+c+1                 (2)              

⇒abc≤3a+1

⇒bc≤3+1a≤4

⇒c2≤4

⇒c=1∨c=2

 

TH1: c=1. Ta có:

(2)⇔ab=a+b+2

⇔(a−1)(b−1)=3

Vì a≥1; b≥1⇒a−1≥0; b−1≥0a≥1; b≥1⇒a−1≥0; b−1≥0

Mà a≥b⇒a−1≥b−1

Do đó a−1=3; b−1=1⇔a=4

 

TH2: c=2. Ta có:

(2)⇔ab=a+b+3(2)

⇔(a−1)(b−1)=4

Vì a≥1; b≥1⇒a−1≥0; b−1≥0

Mà a≥b⇒a−1≥b−1

Do đó: a−1=4; b−1=1a−1=4; b−1=1 hoặc a−1=2; b−1=2

⇔a=5; b=2⇔a=5; b=2 hoặc a=3; b=3

Vậy 4 số tự nhiên cần tìm là (1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)(1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)

21 tháng 7 2015

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\ge1\)thì 

\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

=>\(1\le\frac{3}{z^2}\)

\(\Leftrightarrow z^2\le3\)

nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)

suy ra 3 số đó là 1;2;3

gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )

theo đề ta có:

x+y+z=xyz

=>x+y+zxyz =xyzxyz 

⇔xxyz +yxyz +zxyz =1

⇔1yz +1xz +1xy =1

Nếu x≥y≥z≥1thì 

1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2 

=>1≤3z2 

⇔z2≤3

nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0

suy ra 3 số đó là 1;2;3

10 tháng 8 2015

Ta có a.b.c = a+b+c 

Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt. 

Tìm các số nguyên dương: 

Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 
______________________________________________
li-kecho mk nhé bn Hoàng Khánh Linh

10 tháng 8 2015

LxP nGuyỄn hÒAnG vŨ làm bài nào cũng có dấu gạch dưới rồi đến câu **** cho mk nhé bn

2 tháng 6 2016

Giải lại nhá, hôm qua viết nhầm rồi

Gọi 3 số đó là x;y;z (x;y;z\(\ne\)0)

Theo đề bài ta có: x+y+z=xyz

\(\Rightarrow\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)

\(\Rightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)

\(\Rightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Nếu \(x\ge y\ge z\)thì \(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\)

\(\Rightarrow z^2\le3\)nên chỉ có z=1 thỏa mãn \(z^2\le3\)và z>0

=>y=2 và x=3

Vậy z=1;y=2;x=3

1 tháng 6 2016

3 cái số đấy có khác nhau ko ?

27 tháng 3 2016

3)+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

27 tháng 3 2016

2)

a

v

à

b

l

n

ê

n

a

=

2k+1,

b

=

2m+1

(V

i

k,

m

N)

a

2

+

b

2

=

(2k+1)

2

+

(2m+1)

2

=

4k

2

+

4k

+

1

+

4m

2

+

4m

+

1

=

4(k

2

+

k

+

m

2

+

m)

+

2

=

4t

+

2

(V

i

t

N)

Kh

ô

ng

c

ó

s

ch

í

nh

ph

ươ

ng

n

à

o

c

ó

d

ng

4t

+

2

(t

N)

do

đó

a

2

+

b

2

kh

ô

ng

th

l

à

s

ch

í

nh

ph

ươ

ng